Antennas and
Radiating Systems

11-1 Introduction
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In Chapter 8 we studied the propagation characteristics of plane electromagnetic
waves in source-free media without considering how the waves were generated. Of
course. the waves must originate from sources, which in electromagnetic terms are
time-varying charges and currents. In order to radiate electromagnetic energy effi-
ciently in prescribed directions, the charges and currents must be distributed in
specific ways. Antennas are structures designed for radiating electromagnetic energy
effectively in a prescribed manner. Without an efficient antenna. electromagnetic
energy would be localized, and wireless transmission of information over long
distances would be impossible.

An antenna may be a single straight wire or a conducting loop excited by a
voltage source, an aperture at the end of a waveguide, or a complex array of these
properly arranged radiating elements. Reflectors and lenses may be used to accentuate
certain radiation characteristics. Among radiation characteristics of importance are
field pattern. directivity, impedance, and bandwidth. These parameters will be exam-
ined when particular antenna types are studied in this chapter.

To study electromagnetic radiation, we must call upon our knowledge of Max-
well's equations and relate electric and magnetic fields to time-varying charge and
current distributions. A primary difficulty of this task is that the charge and current
distributions on antenna structures resulting from given excitations are generally un-
known and very difficult to determine. In fact, the geometrically simple case of a
straight conducting wire (linear antenna) excited by a voltage source in the middlet
has been a subject of extensive research for many years, and the exact charge and
current distributions on a wire of a finite radius are extremely complicated even
when the wire is assumed to be perfectly conducting. Fortunately, the radiation field

* This arrangement is called a dipole antenna.
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of such an antenna is relatively insensitive to slight deviations in the current distri-
bution, and a physically plausible approximate current on the wire yields useful re-
sults for nearly all practical purposes. We will examine the radiation properties of
lincar antennas with assumed currents.

By combining Maxwell’s equations we can derive nonhomogeneous wave equa-
tions in E and in H (see Problem P.11 1). However, these equations tend to involve
the charge and current densities in a complicated way. It is generally simpler to solve
for the auxiliary potential functions A and V first. Using A and V' in Egs. (7 55)
and (7-57), we can determine H and E. For harmonic time variation in a simple
medium we have

H = : VxA ' (11-1)
I
and
E=-VV — jwA. (11-2)

The potential functions A and V are themselves solutions of nonhomogeneous wave
equations, Egs. (7-63) and (7-65), and the solutions are given in Egs. (7-78) and
(7-77), respectively. For harmonic time dependence the phasor retarded potentials

2R 7 , are. from Eqgs. (7-100) and (7-99), _
(Jo*R
AP = IJ'U:) gt o’ A=ﬁfV,Jé dv', (11-3)

/")KR 1 @e — JkR
qu) J;/ f'CF ‘{r 4Mf — dv, (11-4)

Jk=dtjg

where k w-Jue = 2r/l is the wavenumber. Of course, A and V' are related by the
Lorentz condition, Eq. (7-98), for potentials, just as J and p are related by the equa-
tion of continuity Eq. (7-48), or

V-J=—jowp. (11-5)

Hence there is no need for evaluating the integrals in both Egs. (11-3) and (11-4).
As a matter of fact, since E and H are related by Eq. (7-104b),

E=_LV><H. (11-6)
Jwe
We follow three steps in the determination of electromagnetic fields from a current
distribution: (1) determine A from J using Eq. (11-3); (2) find H from A using Eq.
(11-1); and (3) find E from H using Eq. (11-6). Note that only Step 1 requires an
integration and that Steps 2 and 3 involve only straightforward differentiation. This
is the procedure we will use in finding the radiation pattern of antennas.

We will first study the radiation fields and characteristic properties of an ele-
mental electric dipole and of a small current loop (or magnetic dipole). We then con-
sider finite-length thin linear antennas, of which the half-wavelength dipole is an
important special case. The radiation characteristics of a linear antenna are largely
determined by its length and the manner in which it is excited. To obtain more
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directivity and other desirable properties, a number of such antennas may be ar-
ranged together to form an antenna array. The geometrical configuration, the spacings
between the array clements, as well as the relative amplitudes and phases of the
excitations in the elements all affect the field pattern of the array. Some basic prop-
erties of simple arrays will be considered.

When an antenna is used as a receiving device, its function is to collect energy
from an incoming electromagnetic wave and deliver it to a receiver. Any antenna
that is useful for radiation is also useful for reception. We will use the reciprocity
theorem to show that the pattern, directivity, input impedance, effective height, and
effective aperture of an antenna are the same for transmitting as for receiving. We
will define backscatter cross section and study the radar equation and the effect of
wave propagation near the earth’s surface. Finally, we will discuss such antenna types
as traveling-wave antennas, Yagi-Uda antennas, helical antennas, broadband an-
tennas and arrays, and aperture antennas.

11-2 Radiation Fields of Elemental Dipoles

% @)D

In this section we study the radiation fields of the simplest types of all radiating
systems—namely, elemental oscillating electric and magnetic dipoles. We will find
that the field solutions for electric and magnetic dipoles are duals of each other. As
a consequence, the radiation properties of one can be deduced from those of the

oth7r without recalculation.
11-2.1 THE ELEMENTAL ELECTRIC DIPOLE

11-1, which consists of a short conducting wire of length d/ terminated in two small
conductive spheres or disks (capacitive loading). We assume the current in the wire

A X 'J-’b‘ Consider the elemental oscillating electric dipole (in free space), as shown in Fig.
{m

i

to be uniform and to vary sinusoidally with time:

i(X= I cos wi)= Relle’] /" (11-7)
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FIGURE 11-1
A Hertzian dipole.
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Since the current vanishes at the ends of the wire, charge must be deposited there.
The relation between the charge and the current is

dq(r) Qiua&,tm .fI[ m;}‘,twuc':"g

= "8
= fo\;b,p(,l zJ Qe
In phasor notation, ¢(1) = Re[ Qe'*']. we have Vo=~ 3j'
= ij{!)Q (11-9)
or
I
g (11-10)
Jw

where, for the indicated current direction in Fig. 111, the positive sign is for the
charge on the upper end and the negative sign for the charge on the lower end. The
pair of equal and opposite charges separated by a short distance effectively form an
electric dipole with a vector phasor electric moment

p=aQd/ (C-m). (11-11)

Such an oscillating dipole is called a Hertzian dipole.
To determine the electromagnetic field of a Hertzian dipole, we follow the three
steps outlined in Section 11-1. The phasor representation of the retarded vector

potential is, from Eq. (11-3), AA
= Spr ~ bR -
7 e - s @ F‘O*'d/ (‘) . ) “(11-12)

where f = k, = wfc = 2n/A. Since

a, =agcos —a,sin 0, (11-13)

the spherical components of A = agAg + a4, + 2,4, are

»—JBR
AR=A_.cos9=”id{ (‘ = )cos 0, (11-14a)
A
[d (e #RY
Ag= —A:sinf):—'u(;( ((JR )sm& (11-14b)
T
A, =0. (11-14c)

From the geometry of Fig. 11-1 we expect no variation with respect to the coor-
dinate ¢. We have, from Eq. (2-139)

1 i 2 dA,
H—EV x A_a¢m[ﬁ(RAﬁ)_WJ

| de I W o) (i
= —a, 5 Bsi 5 oI
¢ ib’R (iBR)?
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The electric field intensity can be obtained from Eq. (11--6):
1

E=  VxH
‘](1)60
e R D B  (RH ¥
= jweg | ¥ Rsin 0 ¢ u oS0 O) =8 2 g (RHW | Wi
which gives
1d/ 1 1
i, ey () = ,—iBR s
R - Hoff*2 cos [( 'ﬁR)Z“L(_;/fRPJ‘ : (11-16a)
1d¢ 1 I :
E,= ——— B2 sin 0 , PR 2
2 o Hofl~ sin I:ﬁR (BR)® = GBR)® ]a L (11-16b)
E,=0, (11-16c)

where 1, = /1to/€o = 1207 ().

Equations (11-15) and (11-16) constitute the electromagnetic field of a Hertzian
dipole. Note that in deriving these expressions we used only the current in the dipole
to find the vector potential A; the charges at the ends of the dipole did not enter
into the calculations. We could, however, take an alternative approach by finding
both A from I d/, as in Eq. (11-12), and the scalar potential V' from the pair of equal
and opposite charges using Eq. (11-4). The electric field intensity could then be
determined from Eq. (11-2), instead of from Eq. (11-6). The result would be exactly
the same as that obtained above (see Problem P.11-2).

The complete field expressions in Egs. (10-15) and (10—16) are fairly complicated.
It is advantageous to examine their behavior in regions near to and far from the dipole
separately.

Near Field In the region near to the Hertzian dipole (in the near zone), R =
2nR/4 « 1, the leading term in Eq. (11-15) is

2 LM
= -4
F‘O‘ FK ‘FR)JX == H, = 4“?,:251“9, (11-17)
'eJFﬂ -1¢)

where we have approximated the factor e #® =1 — jR — (BR)?/2 + - - - by unity.

XN Equation (11-17) is exactly what would be obtained for the magnetic field intensity
[ due to a current element [ d/ by applying the Biot-Savart law in magnetostatics as
given in Eq. (6-33b).
The leading near-zone terms for the electric field intensity are, from Egs. (11-16a)
and (11-16b),
14
Eri= 3
R = dne R 2cos 0 (11-18a)
and
B b ila g (11-18b)
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where the phasor relations (11-10) and (11-11) have been used. These expressions
are identical to those of the electric field intensity due to an elemental electric dipole
of a moment p in the z-direction, as given in Eq. (3-31), obtained by an application
of the laws of electrostatics. The near-zone fields of an oscillating time-varying dipole
are then quasi-static fields.

Far Field The region where R = 2nR/A >» 1 is the far zone. The far-zone leading
terms in Eqgs. (11-15) and (11-16) are

IJAFJ'»U?GK 1de (e PR
f . ‘EIL ? Hy=j— yes ( )ﬁsm@ (A/m), . (11-19a)
o
ldt [e PR .
E}f‘” = E9=ja(eR )qoﬂsmﬂ (V/m). (11-19b)
Ap Y~fa)

Several important observations can be made on these far-zone fields. First, E, and
H, are in space quadrature and in time phase. Second, their ratio E;/H, = 1, is a
constant equal to the intrinsic impedance of the medium (which is, in the present case,
free space). The far-zone fields, then, have the same properties as those of a plane
wave. This is not unexpected, since at very large distances from the dipole a spherical
wavefront closely resembles a plane wavefront.

A third observation from Egs. (11-19a, b) is that the magnitude of the far-zone
fields varies inversely with the distance from the source. The phase of both E; and H,,
is a periodic function of R with a period that is the wavelength:

88T 11-20

e R
Note that the far-zone condition R > 1 translates into R > //2x; hence one has to
be farther away from the dipole at lower frequencies in order to be in the far zone.
(Other characteristics of far-zone fields will be discussed in Section 11-3.)

11-2.2 THE ELEMENTAL MAGNETIC DIPOLE

Let us now consider a small filamentary loop of radius b carrying a uniform time-
harmonic current i(t) = I cos wt around its circumference, as shown in Fig. 11-2,
This is an elemental magnetic dipole with a vector phasor magnetic moment

A (j) :k«&[l- Q;Q/fj m=aJlnb’=am (A -m3. (11-11)

AR)=

M

=
y

To determine the electromagnetic field, we first find the vector potential. The pro-
cedure is the same as that used in Section 6-5, except for the time-dependent nature
of the current. Instead of starting from Eq. (6—39), we have

Jkk JBRy
TFR2E ™ Iy7=> A_Mgﬁe e (1-22)
s R
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FIGURE 11-2
A magnetic dipole.

%
dr

The integral in Eq. (11-22) is relatively difficult to carry out exactly because R,
changes with the location of d¢’ on the loop. For a small loop the exponential factor
in the numerator can be written as

e —ifR1 — o~ JBR,—JF(R1—R)

e pr - R of ek

Substitution of Eq. (11-23) in Eq. (11-22) yields approximately

. = A V i —_ 0
T S @ fd F =
=90 B 5] . =57
OSSR R BRI/ — | (11-24
(//—2;) w
The second integral in Eq. (11-24) obviously vanishes. vanishes. 1he first integral is the same

as that in Eq. (6-39), except for t multiplylng factor (1 + jBR)e IR In view of the
result in Eq. (6—43) we have /’/ 279 - 240

The electric and magnetic field intensities can be detet mineu oy straightforward
differentiation using Egs. (11-6) and (11-1), respectively:

A

_Jjopem i, 0 1 1 ,— iBR _
E, = - f* sin [ R (]ﬁR)Z e, (11-26a)
Jouem 1 ——
= % 0 o~ JBR 11-26
e [(jBR)Z " (jﬁR)“} (S

i 1 1 1 :
= — % sin 6 iR, 11-
Ho= =4 ¥ " [J’ﬁR T BRY +(.f/fm-*]‘ S
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Comparison of Egs. (11=26a, b, ¢) with Egs. (I1=+5)and (11—16a, b) reveals imme-
diately the dual nature of the electromagnetic fields of electric and magnetic dipoles.

Let (E,, H,) denote the clectric and magnetic fields of the electric dipole and
(E,,, H,,) the electric and magnetic fields of the magnetic dipole. We have

E(- e ”()Hm “ 1_27]
and
E"I
H =-—=2 (11-28)
Ho =
if the electric and magnetic dipole moments are related as follows:
A& <A
1d€ = jpm, (f/@vj o4 << (11-29)

where ff = wuy/ng = CU\/;,IOEO. Equations (11-27) and (11-28) are results expected
from the principle of duality, which was introduced in connection with Example 7-7.
Thus Hertzian electric dipole and elemental magnetic dipole are dual devices, and
their electromagnetic fields are dual solutions of source-free Maxwell’s equations. As
a consequence of this duality, the discussions about the nature of the near and far
fields of an electric dipole apply to the dual quantities of a magnetic dipole. In par-
ticular, the far-zone (SR > 1) fields of a magnetic dipole are

Ctr-3p) iy
- Eggue= 4;; ( - )Bsin@ (V/m), (11-30a)
(7-22),
7 - j6R
Z) > | H,= B 5 (e : )ﬁsin@ (A/m). (11-30b)
dmn, R
-39

We can see that the far-field intensities vary inversely as R and their ratio E,/H,
equals the intrinsic impedance 5, of free space.

Examination of the far-field E, in Eq. (11-19b) of the electric dipole and E, in
Eq. (11-30a) of the magnetic dipole reveals that they have the same pattern function
|sin 6] and are in both space and time quadrature. Thus it is possible to combine
electric and magnetic dipoles to form an antenna that produces circular polarization

) :

(see Problem P.11-4). Eg S 4}_ < .ejﬁ,&) % ,5954‘7,9 (//_/?J)

.2 &l " a

11-3 Antenna Patterns and Antenna Parameters

In antenna problems we are primarily interested in the far-zone fields. These are also
called radiation fields. No physical antennas radiate uniformly in all directions in
space. The graph that describes the relative far-zone field strength versus direction
at a fixed distance from an antenna is called the radiation pattern of the antenna, or

&wﬁtew?m /pavtff/w?
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(a) E-plane pattern. (b) H-plane pattern.

FIGURE 11-3
Radiation patterns of a Hertzian dipole.

simply the antenna pattern. In general, an antenna pattern is three-dimensional,
varying with both 0 and ¢ in a spherical coordinate system. The difficulties of making
three-dimensional plots can be avoided—as is the usual practice—by plotting sepa-
rately the magnitude of the normalized field strength (with respect to the peak value)
versus 0 for a constant ¢ (an E-plane pattern) and the magnitude of the normalized
field strength versus ¢ for 6 = n/2 (the H-plane pattern).

messsm EXAMPLE 11-1 Plot the E-plane and H-plane radiation patterns of a Hertzian
dipole.

Solution  Since E, and H, in the far zone are proportional to each other, we need only
consider the normalized magnitude of E,.

a) E-plane pattern. At a given R, E, is independent of ¢: and from Eq. (11-19b)
the normalized magnitude of E, is

Normalized |Ey| = |sin 0. (11-31)

This is the E-plane pattern function of a Hertzian dipole. For any given ¢, Eq.
(11-31) represents a pair of circles, as shown in Fig. 11-3(a).

b) H-plane pattern. At a given R and for 6 = n/2 the normalized magnitude of E,
is [sin 6] = 1. The H-plane pattern is then simply a circle of unity radius centered
at the z-directed dipole, as shown in Fig. 11-3(b). mess

The radiation pattern of practical antennas are usually more complicated than
those shown in Fig. 11-3. A typical H-plane pattern might look like the one illustrated
in Fig. 11-4(a), which is plotted in polar coordinates with normalized |E,| versus ¢.
It generally has a major maximum and several minor maxima. The region of maximum
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radiation between the first null points around it is the main beam, and the regions

of minor maxima arc sidelobes.

Sometimes it is convenient to plot antenna patterns in rectangular coordinates.
The polar plotin Fig. 11 4(a) will appear as Fig. 11 4(b) in rectangular coordinates.
Since the ficld intensities in the main-beam and sidelobe directions may differ by
many orders of magnitude, antenna patterns arc frequently plotted in a logarithmic
scale measured in decibels down from the main-beam level. The patternin Fig. 11 4(b)
converted to a decibel scale will have the shape shown in Fig. 11 4(c).

In the comparison of various antenna patterns the following characteristic para-
meters are of importance: (1) width of main beam, (2) sidelobe levels, and (3) directivity.

Sw/8 82 3w/8

Normalized
[Egl
'y

0 /8 w/4

(a) A typical radiation pattern
in polar coordinates.

FIGURE 11-4
Typical H-plane radiation patterns.

(b) Radiation pattern
in rectangular coordinates.
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(¢) Radiation pattern in rectangular
coordinates plotted in dB scale.
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~ 1 is the length of the arc subtending the angle: This definition is useful
because I/r is independent of the radius of the circle. A similar procedure i
is used to define a solid angle. A typical solid angle is indicated by the
irregular cone shown in Fig. 3-1. When two spheres of radii r; and r,
are drawn with centers at the apex of this cone, areas s; and s, are in-
seribed by the cone on the surfaces of the respective spheres. Since these
surfaces are proportional to the squares of the respective radii, the dimen-
sionless ratio s,/r} = sa/rj = independent of the size of the sphere

SOLID ANGLES

a.pd is used to lefinie the solid angle of the cone. St_emd:'an is th me Fig. 3-1. The solid angle sub-
given to one unit solid angle. Alsteradian is the solid angle gub at ' tended by areas 83, 82 on two
the center of a sphere of one meler radius by an area of one square meler concentric spheres.

on ils surface. An increase of the area inscribed on a given sphere indi-
cates a proportionate increase in the solid angle, and a total solid angle
inseribes the total surface area of 4wr?. The total solid angle is then 4 :
steradians, in the same sense as the total plane angle is 2w radians. How-
ever, it is often convenient to think of solid angles that exceed 4w stera-
dians, just as it is often convenient to think of plane angles that exceed
2w radians.

Elemental solid angles. In defining solid angles, areas inscribed on the !
surface of a specially located sphere were utilized. It is often desirable :
to express solid angles in terms of areas inscribed on very irregular surfaces. i
Since potatoes have such irregular shapes, they are ideal for visualizing
general volumes and general surfaces. If, as in Fig. 3-2, a point O is
chosen anywhere inside such a potato, an element of the skin area ds
will subtend at O an element of solid angle dw. Bydefinition, dw = ds,/r%
where r is the distance from O to the center of ds and ds, is the area '
inscribed by this elemental solid angle on the surface of a sphere of radius r
drawn about O as a center. When ds is sufficiently small, ds, = ds cos 0,
which can be written as ds, = a,-ds by defining the element of area
on this closed surface as a vector ds directed along the outward drawn
normal. The expression for the elemental solid angle then becomes

Fi. 3-2. An illustration of the elemental
solid angle dw = ds./r? subtended by the area
ds on the surface of a potato.

oo = a,-‘:‘—;, (3-1)

b o —— E
Note that if this is integrated over the whole surface of the potato the 5
result must be 4m: ; !

far . jd% = 47]‘_ (3—2)
o 82 e i Fic. 3-3. An illustration
‘ showing how the solid angle

An expression for the solid angle of a right circular cone in terms of of & right conical section is

its apex angle is often needed. This can be obtained by integrating obtained from an integration
Eq. (3-1) over the circular cap of the sphere shown in TFig. 3-3. Using of the elemental solid angle

spherical coordinates, the surface element is (r do)(rsin 0 d¢) = a, - ds. ! ds/r?
e e Ny e e = of
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The significance of each of these parameters is explained below.

1. Width of main beam (or simply beamwidth). The main-beam beamwidth describes
the sharpness of the main radiation region. It is generally taken to be the angular
width of a pattern between the half-power, or — 3 (dB), points. In electric-intensity
plots it is the angular width between points that are 1//2 or 0.707 times the
maximum intensity. Thus, the H-plane pattern in Fig. 11-4 has a 3 (dB) beam-
width equal to (¢, — ¢,), and the E-plane pattern of the Hertzian dipole in
Fig. 11-3(a) has a 3 (dB) bcamwidtMnally the angular width of
the main beam between — 10 (dB) points or between the first nulls is also of
interest. Of course, the main beam must point in the direction where the antenna
is designed to have its maximum radiation.

2. Sidelobe levels. Sidelobes of a directive (nonisotropic) pattern represent regions
of unwanted radiation; they should have levels as low as possible. Generally, the
levels of distant sidelobes are lower than the levels of those near the main beam.
Hence, when one talks about the sidelobe level of an antenna pattern, one usually
refers to the first (the nearest and highest) sidelobe. In modern radar applications,
sidelobe levels of the order of minus 40 or more decibels are required. In practical

T applications the locations of the sidelobes are also of importance.

3. Directivity. The beamwidth of an antenna pattern specifies the sharpness of the
main beam, but it does not provide us with any information about the rest of the
pattern. For example, the sidelobes may be very high—an undesirable feature.
A commonly used parameter to measure the overall ability of an antenna to
direct radiated power in a given direction is directive gain, which may be defined
in terms of radiation intensity. Radiation intensity is the time-average power per
unit solid angle. The SI unit for radiation intensity is watt per steradian (W/sr).
Since there are R? square meters of spherical surface area for each unit solid
angle, radiation intensity, U, equals R? times the time-average power per unit
area or R? times the magnitude of the time-average Poynting vector, 2,,:

E N frixAd &—i =i 53/( Un=RAZ,) - (W) (11-32)

The total time-average power radiated is
_'_‘5 —
Jﬂ:aﬁ' 0{5'//’3 = P,=ggg’av-ds=§ivd9 (W), (11-33)

B where dQ is the differential solid angle, dQ = sin 0d0 d¢.
,5‘ i o sphesy e L The directive gain, G (0, $), of an antenna pattern is the ratio of the radiation
/ intensity in the direction (6, ¢) to the average radiation intensity:

U, ¢) _ 4nU(0, ¢)

Gpl0, ¢) = = : (11-34)
ol6, ¢) @/‘4’? @Tm

Obviously, the directive gain of an figotropic or omnidirectional antenna (an
antenna that radiates uniformly in all directions) is unity. However, an isotropic
antenna does not exist in practice.

i pudn

av = T

(F 4
i

Y7
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The maximum directive gain of an antenna is called the directivity of the
antenna. It is the ratio of the maximum radiation intensity to the average radia-
tion intensity and is usually denoted by D

U 56 UdN
= = i.. 4nU.,.
4qv _ o D =22 - ax (Dimensionless). (11 35)
( gf = Uru' Pr
P = ?
£7C In terms of clectric field intensity, D can be expressed as
47r|me| . :
 § e AL - (Dimensionless). (11-36)

E(0, ¢)|? sin 0 d() dep

o lrle

Directivity is frequently expressed in decibels, referring to unity.

e EXAMPLE 11-2 Find the directive gain and the directivity of a Hertzian dipole.

Soluuon For a Hertzian dipole the magnitude of the time-average Poynting vector

/'/fé = - LdL IS— ) J?m@ Py = IZ{E X H*] = Z%Hﬂ (11-37)

(B
o Hence from Eqs (11-19a, b) and (11-32),

- ITd4L
3 Gind 1df 2
2 47T 2761; U= (32 1 noP? sin? 6. = kﬂf\v_ (11-38)
/=7
The directive gain can be obtained from Eq. (11-34):
47 sin? 0
9 (;b 2n
f f (sin? 0) sin 0 dOd¢

= 3sin? 6.

The directivity is the maximum value of G0, ¢):

I = Gn(g, ¢) =15

which corresponds to 10 log,, 1.5 or 1.76 (dB). -

We note that beamwidth, sidelobe levels, and directive gain are parameters of
an antenna pattern; they do not convey information about the efficiency or the input
impedance of the antenna. A measure of antenna efficiency is the power gain. The
power gain, or simply the gain, Gp, of an antenna referred to an isotropic source is
the ratio of its maximum radiation intensity to the radiation intensity of a lossless
isotropic source with the same power input. The directive gain as defined in Eq.
(I'1-34) is based on radiated power P,. Because of ohmic power loss, P,, in the
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antenna itsell as well as in ncarby lossy structures including the ground, P, is less
than the total input power P;. We have

Pi=P. + P, (11 39)
The powcr gain of an antenna is then
4nU,, ; I
@ Gp =—-—7)'—"-"—"— (Dimensionless). (11 40
Gm-.
AVE M/\/ The ratio of the gain to the directivity of an antenna is the radiation cfficiency, n,:
ﬂ‘f”
Gs P, . ;
vz ﬂ ] = (Dimensionless). (11-41)
R
f Normally, the efficiency of well-constructed antennas is very close to 100%,.

A useful measure of the amount of power radiated by an antenna is radiation
resistance. The radiation resistance of an antenna is the value of a hypothetical
resistance that would dissipate an amount of power equal to the radiated power P,
when the current in the resistance is equal to the maximum current along the antenna.
Naturally, a high radiation resistance is a desirable property for an antenna.

mssnmem EXAMPLE 11-3  Find the radiation resistance of a Hertzian dipole.

Solution
Hertzian dipole for an input time-harmonic current with an amplitude [ is

pA_:f &P, 4 = P =%f;“ f;‘%ﬁgm sin 0d6 dg.

Using the far-zone fields in Egs. (11-19a, b). we find

{
$-

If we assume no ohmic losses, the time-average power radiated by a

whonr 5 4 s cplenicak

S~ La c—

P,=I;(2n2 nob? [ [ sin® 0.d0.de
ey, I d7\?
s b mpeel ] |

(11-42)

(11-43)

In this last expression we have used 120z for the intrinsic impedance of free space,

1o, and substituted 2n/4 for f.
Since the current along the short Hertzian dipole is uniform, we refer the power

dissipated in the radiation resistance R, to I. Equating [ 2R,/2 to P,, we obtain

R, = 80n? (d/

A

Y

(11-44)

SRk
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As an example, if d/ = 0.014, R, is only about 0.08 (Q), an extremely small value.
Hence a short dipole antenna is a poor radiator of electromagnetic power. However,
it is erroncous to say without qualification that the radiation resistance of a dipole
antenna increases as the square of its length because Eq. (11-44) holds only if d/ « 2.

Radiation resistance may be quite different from the real part of the input im-
pedance because the latter includes ohmic losses in the antenna structure itself as
well as losses in the ground. The input impedance of a short dipole antenna has a
large capacitive reactance, which makes it difficult to match and therefore difficult
to feed power to the antenna efficiently.

EXAMPLE 11-4 Find the radiation efficiency of an isolated Herman dipole made of
a metal wire of radius a, lengtm and conductivity o.

Solution  Let I be the amplitude of the current in the wire dipole having a loss
resistance R,. Then the ohmic power loss is

P,=1*R, (11-45)
In terms of radiation resistance R, the radiated power is

P,=4%I°R.. (11-46)
From Eqgs. (11-39) and (11-41) we have

P, R,
B3P, R+R
= |
1+ (R,/R,)

fy =
(11-47)

where R, has been found in Eq. (11-44). The loss resistance R, of the metal wire
can be expressed in terms of the surface resistance R,:

drs
R,=R/|—
7 s(Zna)’ E4E

R, = /% (11-49)
g

as given in Eq. (9-26b). Using Eqs. (11-44) and (11-48) in Eq. (11-47), we obtain
the radiation efficiency of an isolated Hertzian dipole:

where

1

'7r=l+ Rs é i . (11-50)
16073 \a/\dr

v
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Assume that a = 1.8 (mm), d/ = 2 (m), operating [requency [ = 1.5 (MHz), and
a (for copper) = 5.80 x 107 (S/m). We find that

¢ 3 x 108

=7 = 755 fop Soman)
% (1.50 x 10°) x (4n10~7) 3
= e gt e RS =5 3. 4 ;
R, \/ 5.80 x 107 Sl
2
= -4 e —
R, =3.20 x 107* x (2“8 — 10_3) 0.057 (Q),

2
R = SORZ(%)) =0.079 (Q),

and
0.079

= 0079 + 0057 ~ 07

which is very low. Equation (11-50) shows that smaller values of (a/4) and (d//4)
lower the radiation efficiency. o

11—-4 Thin Linear Antennas

We have just indicated that a short dipole antenna is not a good radiator of electro-
magnetic power because of its low radiation resistance and low radiation efficiency.
We now examine the radiation characteristics of a center-fed thin straight antenna
having a length comparable to a wavelength, as shown in Fig. 11-5. Such an antenna
is a linear dipole antenna. If the current distribution along the antenna is known, we
can find its radiation field by integrating over the entire length of the antenna the
radiation field due to an elemental dipole. The determination of the exact current
distribution on such a seemingly simple geometrical configuration (a straight wire

FIGURE 11-5
‘ A center-fed linear dipole with sinusoidal current
et distribution.
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ol a finite radius) is, however, a very diflicult boundary-value problem even if the
wire is assumed to be perfectly conducting. The current must be zero at the ends
of the wire where charges are deposited, and the tangential electric field due to all
currents and charges must vanish at every point on the wire surface. An analytical
] f,,wﬂ formulation of the problem leads to an integral equation in which the current distri-
¥ bution along the antenna is the unknown function under the integral. Unfortunately,
an exact solution of the integral equation does not exist. Various approximate solu-
tions have been attempted. With the advent of high-speed digital computers, nu-
merical solutions for current distributions and input impedances can be obtained for
linear antennas of specific lengths and thicknesses. The ratio of the voltage and the
current at the feed points is the input impedance. Both the solution procedure and
the numerical results are quite involved, and we shall not delve into them in this
book. For our purposes the knowledge of the exact current distribution on the linear
antenna is not of prime importance; a good estimate will give us considerable useful
information on the radiation characteristics of the antenna. We assume a sinusoidal
current distribution on a very thin, straight dipole. Such a current distribution con-
stitutes a kind of standing wave over the dipole and represents a good approximation.
Since the dipole is center-driven, the currents on the two halves of the dipole

are symmetrical and go to zero at the ends. We write the current phasor as

1(z) = 1,, sin p(h — |2|),
1, sin B(h — z), >0 (11-51)
U, sin B(h + 2), z2 <O

J{({@rﬂ

We are interested only in the far-zone fields. The far-field contribution from the differ-
ential current element Idz is, from Egs. (11-19a, b),

Sy U~13),

—JBR’
@@ = dEy = nodH, =jI4dZ (B—R—;w)no[)’ sin 0. (11-52)
& 7 Pule "
1) Now R’ in Eq. (11-52) is slightly different from R measured to the origin of the
spherical coordinates, which coincides with the center of the dipole. In the far zone,
R > h,
R' =(R?>+ 22 —2Rzcos 0)'> 2R — z cos 6. (11-53)

The magnitude difference between 1/R’" and 1/R is insignificant, but the approximate
relation in Eq. (11-53) must be retained in the phase term. Using Egs. (11-51) and
(11-53) in Eq. (11-52) and integrating, we have

Eﬂ S ’70H¢

i Im’Toﬁ sin 0 - jBR
= 4nR ?

: 11-54
ﬂh sin f(h — |z|)e/= s dz. : )

The integrand in Eq. (11-54) is the product of an even function of z, sin f(h — |z|), and

eP= 58 — cos (Bz cos 0) + j sin (fz cos 0),
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where sin (ffz cos 0) is an odd function of z. Integrating between symmetrical limits
—h and h, we find that only the part of the integrand containing the product

sin f(h — |z|) cos (fiz cos 0) does not vanish. Equation (11 54) then reduces to
Eelsny . % .
Ey=noH, =] ];{m'{ e PR J‘” sin fi(h — z) cos (fiz cos 0)dz
o5t (11-55)
= j—-——~R e TIIRE(H),
where
cos (ffh cos ) — cos fI
Floy el ) i (11-56)

sin A

The factor |F(0)| is the E-plane pattern function of a linear dipole antenna. It
describes the radiation pattern or the variation of the normalized far field, |E,|, versus
the angle 0. The exact shape of the radiation pattern represented by |F(0)| in Eq.
(11-56) depends on the value of fh = 2nh/4 and can be quite different for different
antenna lengths. The radiation pattern, however, is always symmetrical with respect
to the § = n/2 plane. Figure 11-6 shows the E-plane patterns for four different dipole
lengths measured in terms of wavelength: 2h/4 = 4, 1. 3 and 2. The H-plane patterns
are circles inasmuch as F(f) is independent of ¢. From the patterns in Fig. 11-6 we
see that the direction of maximum radiation tends to shift away from the 6 = 90°
plane when the dipole length approaches 34/2. For 2i = 24 there is no radiation in
the 6 =90 plane.

@) 2h/X =172 . () 2h/A=1.
< Z
9 9
(©) 2h/k = 372 . ) 2h/\ = 2.

FIGURE 11-6
E-plane radiation patterns for center-fed dipole antennas.
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11-4.1 THE HALF-WAVE DIPOLE

The half-wave dipole having a length 2h = 4/2 is of particular practical importance
because of its desirable pattern and impedance characteristics. We shall now examine
its properties in more detail.

For a hall-wave dipole, f$h = 2rh/. = n/2, the pattern function in Eq. (11 56)
becomes

cos [{_rr/ 2) cos 6]

Y
il sin 6

(11-57)
This function has a maximum equal to unity at 0 = 90° and has nulls at ¢ = 0" and
180°. The corresponding E-plane radiation pattern is sketched in Fig. 11-6(a). The
far-zone field phasors are, from Eq. (11-55),

_j60I,, _gg JoOS [(7/2) cos 0]
Ep=—gte —is (11-58)
and
_ JEy _jpn JE08 [(7/2) cos 0] =
¢=2mR ¢ { sin 0 . ke
The magnitude of the time-aygrage Poynting vector is
lé 1512 (cos [(n/2) cos 0]) >
2 IR R 9 . o = &
Ty TR R { sin 0 } 11-60)

The total power radiated by a half-wave dipole is obtained by integrating #,, over
the surface of a great sphere:

é—@(‘ . P,:f;” [" ,R? sin 0d0 dp
=

2 [/ (11-61)
_ 3072 fxcos [(FT,Z)COS 0] i,
mJo sin 0

The integral in Eq. (11-61) can be evaluated numerically to give a value 1.218. Hence

P.=365412 (W) (11-62)

from which we obtain the radiation resistance of a free-standing half-wave dipole:
p o

R, ="' =731 (@ (11-63)

m

Neglecting losses, we find that the input resistance of a thin half-wave dipole equals
73.1 (Q) and that the input reactance is a small positive number that can be made
to vanish when the dipole length is adjusted to be slightly shorter than 4/2. (As we
have indicated before, the actual calculation of the input impedance is tedious and
is beyond the scope of this book.)
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The directivity of a half-wave dipole can be found by using Eq. (11 35). We have,
from Eqgs. (11-32) and (11- 60),

AL a0l e .
TL KL \_(;:1? e % Umnx = Rz‘%ﬂ'(goo) = _T?- lrfr (ll 64)
and
R .1 LT (1165)
T 36.54

which corresponds to 10log,, 1.64 or 2.15(dB) referring to an omnidirectional
radiator.

The half-power beamwidth of the radiation pattern is the angle between the two
solutions of the equation

cos [(m/2)cos 0] 1
sin 0 B
which can be solved either numerically or graphically to give a beamwidth of 78°.

Thus a half-wave dipole is only slightly more directive than a short Hertzian dipole
that has a directivity of 1.76 (dB) and a beamwidth of 90°.

) 0<0<m,

EXAMPLE11-5 A thin quarter-wavelength vertical antenna over a perfectly con-
ducting ground is excited by a sinusoidal source at its base. Find its radiation pattern,
radiation resistance, and directivity.

Solution Since current is charge in motion, we can use the method of images dis-
cussed in Section 4-4 and replace the conducting ground by the image of the vertical
antenna. A little thought will convince us that the image of a vertical antenna carrying
a current [ is another vertical antenna. The image antenna has the same length, is
equidistant from the ground, and carries the same current in the same direction as

. o673
[ 1

monopole over conducting

A4
N4 E &
s - = 7T
/ - AN
l / N - + \
il i ;_ S T
(a) A vertical quarter-wave o

-

ground. 4
N/4
4
J_ J(@C” )/oo) FIGURE 11-7
(b) Equivalent half-wave Quarter:wave monopole over a
dipole radiating into conducting ground and its equiva-
upper half-space. lent half-wave dipole.
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the original antenna. The clectromagnetic ficld in the upper half-space due to the
quarter-wave vertical antenna in Fig. 11 7(a) is, then, the same as that of the half-
wave antenna in Fig. 11=7(b). The pattern function in Eq. (11—57) applies here for
0 < 0 < n/2, and the radiation pattern drawn in dashed lines in Fig. 11-7(b) is the
upper half of that in Fig. 11-6(a).

The magnitude of the time-average Poynting vector, ., in Eq. (11-60), holds
for 0 < 0 < n/2. Inasmuch as the quarter-wave antenna (a monopole) radiates only
into the upper half-space, its total radiated power is only onc-half that given in Eq.
(11-62).

=182 (W,
Consequently, the radiation resistance is
¥ < o

r= 2
I,

R

"= 3654 (Q), (11-66)

which is one-half of the radiation resistance of a half-wave antenna in free-space.
To calculate directivity, we note that although the maximum radiation intensity
U.,..x remains the same as that given in Eq. (11-64), the average radiation intensity

is now P,/2n. Thus,

U U
D=-—"T==_""2 =164, (11-67)

Uav r .
@'J‘A’-fdmﬁ Kypcr P ;.e./qc-w/

which is the same as the directivity of a half-wave antenna. : we
cokife. g — 3.
11-4.2 EFFECTIVE ANTENNA LENGTH

For thin linear antennas with a given current distribution it is sometimes convenient
to define a quantity called the effective length, to which the far-zone field is propor-
tional. Let us refer to the dipole antenna in Fig. 11-5 and assume a general phasor
current distribution I(z). The far-zone field is then, from Eq. (11-54),

Jr30 =3 3 . ifz cos
Eg=noll, = = I {sm 0 f_h I(z)e’#* edz}. (11-68)
Let I(0) be the input current at the feed point of the antenna. We write Eq. (11-68)

as
_ j301(0)

E, = nH, - Be PR (), (11-69)
where
sin @ prn : :
— fz cos @ Y
sdoy= © _f (% dz (11-70)

is the effective length of the transmitting antenna. (We will discuss the effective length
of a receiving antenna presently.) As we see from Eq. (11-69), /, measures the effec-
tiveness of the antenna as a radiator, and for a given current distribution the far-zone
field is proportional to /,, which contains all the information about the directional
properties of the antenna. In most practical situations the important value of the

hotf
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effective length is that at 8 = n/2, where

¥
4,:1()ﬂh1(z)dz (m). (11-71)

Equation (11-71) indicates that /7, is the length of an equivalent linear antenna with
a uniform current 1(0) such that it radiates the same far-zone ficld in the 0 = n/2
plane.

EXAMPLE 11-6  Assume a sinusoidal current distribution on a center-fed, thin.
straight half-wave dipole. Find its effective length. What is its maximum value?

Solution  For the assumed sinusoidal current distribution we use Eq. (11-51) for I(z)
and substitute it in Eq. (11-70), where I(0) = I,, and h = /4. We have

oA ;
£,(0) = sin 0 ,rj/:,‘; sin ﬁ(z - |z|)e1ﬁz s (11-72)

The above integral has been evaluated in Eq. (11-56). Thus,

n
5 cos (5 cos 9)
Z0) =

gl ma (11-73)
The maximum value of Z,(0) is at 8 = n/2, where the effective length is
s e
Ly =
We note from Eq. (11-74) that the maximum effective length of a half-wave dipole
is less than its physical length, 4/2. e

A careful examination of Eq. (11-71) reveals a potential anomaly in the ap-
pearance of I(0) in the denominator. When the half-length of a dipole is greater than
//4 and approaches 4/2, I(0) would be progressively less than I,,, which would not
occur at z = 0. This could make 7, much greater than 2h. Thus the definition of
effective length as given in Egs. (11-70) and (11-71) is meaningful only for relatively
short antennas that have a current maximum at the feed point.

The effective length of a receiving linear antenna is defined as the ratio of the
open-circuit voltage V,. induced at the antenna terminals and the electric field in-
tensity E; = |E;| at the antenna that induces it:

V
[ 0 = — 0(‘, -
A0) E (11-75)

i
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FIGURE 11-8
_l_ A linear antenna in the receiving mode.

where the negative sign is to conform with the convention that the electric potential
increases in a direction opposite to that of the electric field. The situation is illus-
trated in Fig. 11-8. We will assume that E; lies in the plane of incidence, since the
component of E; normal to the antenna does not induce a voltage across the antenna
terminals. Obviously, the open-circuit voltage V,. depends on E,, 6, and fh in a com-
plicated way. It is possible to use a reciprocity theorem to prove formally that the ef-
fective length of an antenna for receiving is the same as that for transmitting [14].
In Section 11-6 we shall prove that both the impedance and the directional pattern
of an isolated antenna in the receiving mode are the same as those of the antenna
in the transmitting mode. We may also conclude the equality of the effective lengths
operating under these two modes.

If the incoming electric field E; is not parallel to the dipole, there is a polar-
ization mismatch, and the magnitude of the open-circuit voltage will be

[l = & B (11-76)

where ¢, denotes the vector effective length. Obviously. |1, | will be maximum when
E; is parallel to the dipole and will be zero if E; is perpendicular to the dipole.

11-5 Antenna Arrays

Antenna arrays are groups of similar antennas arranged in various configurations
(straight lines, circles, triangles, and so on) with proper amplitude and phase relations
to give certain desired radiation characteristics. Frequently, the radiation charac-
teristics of importance are the direction and width of the main beam, sidelobe levels,
and/or directivity. In this section we examine the basic theories and characteristics
of linear antenna arrays (radiating elements arranged along a straight line). The elec-
tromagnetic field of an array is the vector superposition of the fields produced by

' Bracketed numbers refer to the literature listed in the reference section at the end of this chapter.
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the individual antenna elements. We first consider the simplest case of two-eclement
arrays. After some experience has been gained with them, we consider the basic prop-
erties of uniform lincar arrays made up of many identical clements.

11-5.1 TWO-ELEMENT ARRAYS

The simplest array.is onc consisting of two identical radiating clements (antennas)
spaced a distance apart. This is illustrated in Fig. 11-9. For simplicity, let us assume
that the far-zone electric field of the individual antennas be in the #-direction and
that the antennas are lined along the x-axis. The antennas are excited with a current
of the same magnitude, but the phase in antenna 1 leads that in antenna 0 by an
angle & We have :

e “JfRo
E, = E,F(0, ¢)- e (11-77)
(0]
el ~IPRy
El = EmF(B, ¢) "Ts “ 1*78)

1

where F(0, ¢) is the pattern function of the individual antennas. and E,, is an ampli-
tude function. The electric field of the two-element array is the sum of E, and Ej;.

Hence, SANCE Bha E-—Qﬁ'mf«{n Wﬂ\ﬂwﬁcj
o~ iBRo  i¢p—iBR: o Aave 46“"”/"’"””"’3(‘ %}/
0 i

In the far zone, R, » d 2, and the factor 1/R, in the magnitude may be replaced
approximately by 1/R,. However, a small difference between R, and R, in the ex-
ponents may lead to a significant phase difference, and a better approximation must
be used. Because the lines joining the field point P and the two antennas are nearly
parallel, we may write

R, = R, — d sin @ cos ¢. (11-80)

Pe

FIGURE 11-9 A{J

A two-element array. A
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Substitution of Eq. (11 80) in Eq. (11-79) yields

B Em l“_(()_’, (/)) ()--jﬂRn[] ot (,jﬂd sin 0 cos n{)(,j;]
Ro (11 81)
R L Y
s ].‘m » PR, 2 2 cos 2
R, ( ¢ cos 5
where
Y = fd sin 0 cos ¢p + E (11-82)
The magnitude of the electric field of the array is
2E
1Bl = R(;i [F((), ¢))| cos %i‘ (11-83)

where |F(0, ¢)| may be called the element factor, and |cos (¥/2)| the normalized array
Jactor. The element factor is the magnitude of the pattern function of the individual
radiating elements, and the array factor depends on array geometry as well as on
the relative amplitudes and phases of the excitations in the elements. (In this partic-
ular case the excitation amplitudes are equal.) The array factor is that of an array
of isotropic elements, the directional property of the elements having been accounted
for by the element factor. From Eq. (11-83) we may conclude that the pattern function
of an array of identical elements is described by the product of the element Sfactor
and the array factor. This property is called the principle of pattern multiplication.

For an array of two parallel z-directed half-wave dipoles the magnitude of the
total electric field is, from Egs. (11-57) and (11-83),

2E,, |cos [(n/2) cos 6]
R, sin 0

|E| =

cos 1,20‘ (11-84)

Since y is also a function of 6, we see that the pattern in an E-plane is not the same
as that of a single dipole, except when ¢ = + /2. In the H-plane, § = n/2, and the
pattern is determined entirely by the array factor |cos W/2)|.

EXAMPLE 11-7 Plot the H-plane radiation patterns of two parallel dipoles for the
following two cases: (a) d = 4/2, £ = 0; (b) d = A/4, £ = —n/2.

Solution Let the dipoles be z-directed and placed along the x-axis, as shown in Fig.
11-9. In the H-plane (0 = n/2), each dipole is omnidirectional, and the normalized
pattern function is equal to the normalized array factor |4(¢)|. Thus

|4(¢)| = coslg = cos%(ﬁd cos ¢ + §) .-
a)d=A2Pd=n),,=0:
|A(¢)| = |cos (g cos qf;)l (11-85a)
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o LS i

FIGURE 11-10
H-plane radiation patterns of two-clement
(=N 2 e = (by d=n/d, £ = —7/2. parallel dipole array.

The pattern has its maximum at ¢, = +n/2—that is, in the broadside direction.
This is a type of broadside array. Figure 11-10(a) shows this broadside pattern.
Since the excitations in the two dipoles are in phase, their electric fields add in
the broadside directions, ¢ = +m/2. At ¢ = 0 and = the electric fields cancel each
other because the /4/2 separation leads to a phase difference of 180 .

b) d = 4/4 (fd = n/2), { = —n/2:

A()] =

I
4
which has a maximum at ¢, = 0 and vanishes at ¢ = n. The pattern maximum
is now in a direction along the line of the array, and the two dipoles constitute
an endfire array. Figure 11-10(b) shows this endfire pattern. In this case the phase
in the right-hand dipole lags by n/2, which exactly compensates for the fact that
its electric field arrives in the ¢ = O direction a quarter of a cycle earlier than the
electric field of the left-hand dipole. As a consequence, the electric fields add in
the ¢ = 0 direction. In the ¢ = = direction, the /2 phase lag in the right-hand
dipole plus the quarter-cycle delay results in a complete cancellation of the fields.

cos — (cos ¢ — 1)|, (11-85b)

s EXAMPLE 11-8 Discuss the radiation pattern of a linear array of the three isotropic
sources spaced 4/2 apart. The excitations in the sources are in-phase and have ampli-
tude ratios 1:2:1.

1 41

—e— — o — e —— —
1 2

—e

FIGURE 11-11

(a) Three-element (b) Two displaced A three-element array and its equivalent
binomial array. two-element arrays. pair of displaced two-element arrays.
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FIGURE 11-12
Radiation pattern of three-element broadside binomial array.

Solution  This three-source array is equivalent to two two-element arrays displaced
+/2 from each other as depicted in Fig. 11-11. Each two-element array can be con-
sidered as as a radiating source with an element factor as given by Eq. (11-85a) and
an array factor, which is also given by the same equation. By the principle of pattern

multiplication we obtain
n
cos (5 cos qb)

The radiation pattern represented by the pattern function [cos [(7/2) cos ¢][? is
sketched in Fig. 11-12. Compared to the pattern of the uniform two-element array
in Fig. 11-10(a), this three-element broadside pattern is sharper (more directive). Both
patterns have no sidelobes. p—

2

4E Lo
|E| = == . (11-86)
R,

The three-element broadside array is a special case of a class of sidelobeless ar-
rays called binomial arrays. In a binomial array of N elements the excitation ampli-
tudes vary according to the coefficients of a binomial expansion (¥, '), n =0,1,2, ...,
N — 1. For N = 3 the relative excitation amplitudes are (3) = 1. (}) = 2 and (3) = 1,
as in Example 11-8. To obtain a directive pattern without sidelobes, d in a binomial
array is normally restricted to be 4/2. The feature of no sidelobes in the array pattern
of a binomial array is accompanied by a wider beamwidth and a lower directivity
compared to those of a uniform array with the same number of elements.

11-5.2 GENERAL UNIFORM LINEAR ARRAYS

We now consider an array of identical antennas equally spaced along a straight line.
The antennas are fed with currents of equal magnitude and have a uniform progressive
phase shift along the line. Such an array is called a uniform linear array. An example
is shown in Fig. 1113, where N antenna elements are aligned along the x-axis. Since
the antenna elements are identical, the array pattern function is the product of the
clement factor and the array factor. Our attention here will be concentrated on the

R Py e A \ B o P LA LR P T

Ay
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o s

Phase shifts 0 (N=2)E (N=1)E

FIGURE 11-13
A general uniform linear array.

manner in which the array factor depends on the parameter fid (=2nd/4) and the
progressive phase shift ¢ between neighboring elements. The normalized array factor
in the xy-plane is

i 1 . ; ]
6= % |A(¢)‘2N|] +eJ¢’+eJ‘2V'1+...+eJ(N*1W’[’ (11-87)

where
Y = Pdcos ¢ + ¢ (11-88)

The polynomial on the right side of Eq. (11-87) is a geometric progression and can

be summed up in a closed form: ej/\/%— ok /%_

PEEL sl Sl
=¥ | S 7 | 2 T’ ,5)%)
or

|AW)| = i 31811111(1’(‘:?/]1%2‘ (Dimensionless). (11-89)

A
4l
1

FIGURE 11-14
Normalized array factor of a five-
element uniform linear array.
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This is the gencral expression of the normalized array factor for a uniform linear ar-
ray. Figure 11--14 is a sketch of the normalized array factor for a five-clement array.
The actual radiation pattern as a function of ¢ depends on the values of fid and ¢
(sec Problem P.11-17). As ¢ varies from 0 to 2m, the value of Y changes from fd + ¢
to —fid + &, covering a range of 2fd or 4nd/A. This defines the visible range of the
radiation pattern.

We may derive several significant properties from |A(y)

as given in Eq. (11-89).
1. Main-beam direction. The maximum value occurs when ¢ = 0 or when

fid cos ¢y + £ =0,
which leads to

Cagademes —/%. _ (11-90)

Two special cases are of particular importance.

a) Broadside array. For a broadside array, maximum radiation occurs at a
direction perpendicular to the line of the array—that is, at ¢, = +n/2. This
requires ¢ = 0, which means that all the elements in a linear broadside array
should be excited in phase, as was the case in Example 11-7(a). (:?. I~ &)

b) Endfire array. For an endfire array, maximum radiation occurs at ¢, = 0.
Equation (11-90) gives

&= —fdcos ¢, = —fd.
We note that this condition is satisfied by the two-element array in/Example
1-7(b). € g H=to @) )
2. Null locations. The array pattern has nulls when |4(¢)| = 0 or when

NTl’bzikn, Bt (11-91)
It is obvious that the corresponding null locations in ¢ are different for broad-

side and endfire arrays because of the different values of ¢ implicit in .

3. Width of main beam. The angular width of the main beam between the first nulls
can be determined approximately for large N. Let ,, denote the values of y at
the first nulls:

Nyo, 2n

2 — iTC or 11101: iﬁ.

In order to see how Y, converts to an angle between the first nulls in ¢, we

need to know the direction of the main beam. ; +5)= o
a) Broadside array (£ =0, ¢, = n/2). For a broadside array, ¢ = f§d c@f the

first null occurs at ¢,,, then the width of the main beam between the first
nulls is 2A¢ = 2(¢y, — do)- At ¢y, we have

cos (g, = cos (P + AP) = @-

pd’
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¥=pd co.rf( > @;75 CosCAAaH)
cos [~ + A¢ —sin A¢p = — . )é//pﬁf
TR Nﬁd
= A {%/ =270/
) Na'

Aq‘)=sin‘(—N(-I (11-92)

which, for ¢, = n/2, gives

The last approximation is obtained when Nd > A. Equation (11-92) leads to
a useful rule of thumb that the width of the main beam (in radians) of a long
uniform broadside array is approximately twice the recnprocal of the array
length in wavelengths.

b) Endfire array (¢ = —fd, ¢o = 0). For an endfire array, y = fd(cos ¢ — 1), and
L AL e
. NN Nd
But cos ¢o, = cos A¢ = 1 — (A¢)?/2 for small A¢. Thus,

(Ag)?
. Nd

COS gy — 1

H?

or
22

Ap = .
¢ Nd

(11-93)

Comparing Eq. (11-93) with Eq. (11-92), we may conclude that the width of
the main beam of a uniform endfire array is greater than that of a uniform
broadside array of the same length (because Nd > 4/2).
4. Sidelobe locations. Sidelobes are minor maxima that occur approximately when
the numerator on the right side of Eq. (11-89) is a maximum—that is, when
|sin (Ny//2)| = 1 or when

’f:r' ?-/‘/ N—¢=i(2m+1);, Rty (11-94)

2
The first sidelobes occur when
N l,(; 3
== don (m=1). (11-95)

Note that Ny/2 = +n/2 (m = 0) does not represent locations of sidelobes because
they are still within the main-lobe region.

S. First sidelobe level. Animportant characteristic of the radiation pattern of an ar-
ray is the level of the first sidelobes compared to that of the main beam, since
the former is usually the highest of all sidelobes. All sidelobes should be kept as
low as possible in order that most of the radiated power be concentrated in the
main-beam direction and not be diverted to sidelobe regions. Substituting Eq.
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(11-95) in Eq. (11-89), we find the amplitude of the first sidelobes to be
1 ] 1 7
Y . =—=10.212
N sm(?n/2N} 37{/2N " 3n

for large N. In logarithmic terms the first sidelobes of a uniform linear antenna
array of many elements are 20 log,,, (1/0.212) or 13.5 (dB) down from the principal
maximum. This number is almost independent of N as long as N is large.

One way to reduce the sidelobe level in the radiation pattern of a linear array is
to taper the current distribution in the array elements—that is, to make the excita-
tion amplitudes in the elements in the center portion of an array higher than those
in the end elements. This method is illustrated in the following example.

s EXAMPLE 11-9  Find the array factor and plot the normalized radiation pattern of a

broadside array of five isotropic elements spaced 4/2 apart and having excitation
amplitude ratios 1:2:3:2:1. Compare the first sidelobe level with that of a five-element
uniform array.

Solution The normalized array factor of the five-element tapered array is

AW)|

5|1 + 2e™ + 3¢’ + 27 + Y|
— %| JZW{:J, + 2(eﬂlf +e Ju’l) o (612-11 5 e—ﬂuf)]| (11-96)
§[3 4+ 4 cos Y + 2 cos 2y|.

The graph of |4(y)| versus  is shown in Fig. 11-15(a). Note that this figure holds
for a general Y = fid cos ¢ + ¢; the values of fd and £ have not yet been specified.

In order to plot the desired radiation pattern we use the following additional
information:

Broadside radiation, { = 0: = fid cos ¢;

Element spacing, d = % W = 7 cos ¢.

The normalized radiation pattern can be plotted from
|A(¢)| = 3|3 + 4 cos (n cos ¢) + 2 cos (27 cos ¢)|.

However, having calculated and plotted |A(y)|, we do not need to recalculate the
array factor as a function of ¢. This conversion can be effected graphically as follows
(see Fig. 11-15):

1. Extend the vertical axis of the array-factor graph downward, and let it intersect
with a horizontal line (which represents the line for ¢ = 0 and ¢ = =n). The point
of intersection is the point for £ = 0.

2. Locate the point, Py, on the horizontal line that is ¢ radians to the right or left
of the point of intersection, depending on whether & is positive or negative. (In
the present case, £ = 0 and P, is at the point of intersection.)
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3. Using P, as the center, draw a circle with fid as the radius.
4. For any angle ¢,, draw the radius vector PyP,. (The projection P, P, is equal to
Yy = fdcos ¢,.)

5. At ¢, measure the magnitude of |A(,)|, which is marked as P, on the radius
vector PyP,. (P, is a point on the normalized radiation pattern.)

Repeat this process until the entire radiation pattern is obtained.
Figure 11-15(b) shows the normalized radiation pattern of this five-clement
broadside array with tapered excitation. The first sidelobe level is found to be 0.11

AW
4

i

AW

I

I

I

I

—— === —0.11 ¥
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—-n/2 0 ".1/1
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FIGURE 11-15

(a) Graph for normalized array
factor as a function of ¥, and
(b) normalized polar radiation
pattern of a five-element broad-
side array with d = 1/2 and
tapered excitation amplitude
ratios 1:2:3:2:1 (Example
11-9).
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or 20 log,, (1/0.11) = 19.2 (dB) down from the main-beam radiation. This compares
with 0.25 or 12 (dB) down for the five-element uniform broadside array shown in
Fig. 11-14. i

In the discussion of uniform lincar arrays we started out with the assumptions
of equal spacing, equal excitation amplitude, and constant progressive phase shifts.
The main reason for making these assumptions is mathematical simplicity in analyzing
radiation characteristics. The preceding example shows that a tapered nonuniform
amplitude distribution in the array elements produces the desirable result of a
reduction in the sidelobe level. In a similar manner the spacings between neighboring
elements may be made unequal [1]-[4], and the phase shifts-do not have to be
constant [5]. In two-dimensional arrays the elements need not be arranged in a rect-
angular lattice [6], [7]. We have, then, many additional "parameters that can be
adjusted to achieve desirable results. Adjustments in these parameters, however,
destroy the simplicity of the analysis. There are techniques for synthesizing an antenna
array to approximate a specified radiation pattern closely. It is not possible to examine
all the various possible array designs in this book, but they do exist and present
themselves as interesting problems [8]-[12].

Our discussions on linear arrays can be extended to two-dimensional rectangular
arrays. A rectangular array can be studied as an array of linear arrays, to which the
principle of pattern multiplication applies. From Eq. (11-90) we note that the direction
of the main beam of a uniform linear array can be changed by simply changing the
amount of progressive phase shift . In fact, the radiation pattern can be changed
from broadside (¢ = 0) to endfire (¢ = — fd) or to somewhere in between. We see
here a possibility of scanning the main beam by simply varying &. This can be achieved
in practice by using electronically controlled phase shifters. Antenna arrays equipped
with phase shifters to steer the main beam electronically are called phased arrays. The
main beam of a two-dimensional array can be made to scan in both 6 (elevation)
and ¢ (azimuth) directions. Scanning phased arrays are of great practical importance
in radar and radioastronomy work, in which the antenna system may be arrays of
many thousands of elements that are not amenable to rapid mechanical motion for
beam steering. Time-delay circuits may also be used to furnish the required phase
shifts to the various array elements. By changing the frequency the time-delays are
translated into varying phase shifts. This scheme is called frequency scanning.

11—6 Receiving Antennas

In the discussion of antennas and antenna arrays so far we have implied that they
operate in a transmitting mode. In the transmitting mode a voltage source is applied
to the input terminals of an antenna, setting up currents and charges on the antenna
structure. The time-varying currents and charges, in turn, radiate electromagnetic
waves, which carry energy and/or information. A transmitting antenna can then be
regarded as a device that transforms energy from a source (a generator) to energy
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FIGURE 11-16
]@ Two coupled antennas.

associated with an electromagnetic wave. A receiving antenna, on the other hand,
extracts energy from an incident electromagnetic wave and delivers it to a load. In
the receiving mode the external electromagnetic field that causes currents and charges
to flow is incident on the entire antenna structure, not just at the input terminals.
Moreover, the induced currents and charges, which depend on the direction of arrival
of the incident electromagnetic wave, will produce reradiation or scattering of electro-
magnetic energy, making the situation very complicated. We may reasonably expect
that the current and charge distributions on an antenna in the receiving mode are
different from those in the transmitting mode. Nevertheless, despite these differences,
reciprocity relations enable us to conclude that (1) the equivalent generator impedance
of an antenna in the receiving mode is equal to the input impedance of the antenna
in the transmitting mode, and (2) the directional pattern of an antenna for reception
is identical with that for transmission. We will justify these two important conclusions
by using equivalent network representations. Also in this section we will discuss the
concepts of effective area and backscatter cross section.

11-6.1 INTERNAL IMPEDANCE AND DIRECTIONAL PATTERN

Let us assume that a transmitter with antenna A radiates electromagnetic energy,
which is absorbed by a distant receiver with antenna B. Antenna B moves about an-
tenna A at a constant distance r' and is always oriented in such a way as to receive
maximum power, as illustrated in Fig. 11-16. The two coupled antennas and the

space between can be represented as a two-port T-network shown in Fig. 11-17. The

terminal characteristics, (V, I,) and (V,, I,) of antennas A and B, respectively, are
linearly related by the following equations:

V1=21111+21212, (11—97)
VZ — 22111 + 22212, ) (11*98)

where Z,,, Z,,, Z,,, and Z,, are open-circuit impedance coefficients.

' The symbol r, instead of R, is used here to denote distance in order to avoid possible confusion of the
latter with the symbol for resistance used later in this chapter.
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2 cife: FIGURE 11-17
_  Equivalent two-port network of coupled
- transmitting and receiving antennas.

When the medium in the transmission path between antennas A and B is bilateral
such that reciprocity relations hold, the transfer or coupling impedances Z,, and
Z,, are equal.’ Under normal circumstances, transmitting and receiving antennas
are separated by very large distances, and the coupling impedances are negligibly
small as far as the reaction on the transmitting antenna owing to scattering by the
receiving antenna is concerned. In the limit r — oo,

lim Z,, = 0. (11-99)
The parallel arm of the T-network in Fig. 11-17 is almost a short-circuit, and the
impedance coefficients Z,, and Z,, are nearly equal to the input impedances Z 4 and
Zy, respectively, of isolated antennas A and B in the transmitting mode. Equation
(11-97) can be written approximately as

A M BN S (11-100)

An equivalent circuit representing Eq. (11-100) is drawn in Fig. 11-18(a).

The coupling from the transmitting antenna to the receiving antenna, however,
cannot be neglected inasmuch as it is through this coupling that the latter extracts
energy from the electromagnetic wave originated from the former. Thévenin’s theorem
can be applied to the left of the load impedance Z; in the network in Fig. 11-17 to
determine an open-circuit voltage V,, and an internal impedance Z,. An equivalent
circuit at the receiving end is shown in Fig. 11-18(b). We have

z
V=222V, (11-101)

le
@(z

2
: 21,

Z,=\Z,; — Z,;) += 1mn—2Zy)=2,, —=—= (11-102)
Cerx/Z/f)

Because of the weak coupling, we conclude that the equivalent generator internal
impedance Z, for antenna B in the receiving mode is approximately equal to its input
impedance when it is transmitting; that is,

Feooufs i 7 (11-103)

' An example of a nonbilateral medium for which Z,, # Z,, is the ionosphere under the
influence of the earth’s magnetic field.
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I, oy 3 I
& Z, =
,.f.
o () = 7
- - ~ FIGURE 11-18
: e —— " Approximate equivalent circuits for
(a) Circuit at transmitting end. (b) Circuit at receiving end. weakly coupled antennas.
When antenna B is receiving, V, = —1,Z,, and Eq. (11-98) becomes
x :
I, = ——>—2_1,. 11-104
2 F il : ( )
The time-average power absorbed in Z, is
I Lt 2 B
P = Re[-V,1%] =2 21| RdAZ,). H=
L= o[ —Val%] I aZy) (11-105)

For two successive positions of antenna B as indicated in Fig. 11-16 the ratio of the
absorbed powers in Z, is

Pa;, Z 10, P
W01, ¢) _ | 22101 91 o
P(6;, ¢2)  |Z,1(6, ¢2)
Thus the absorbed power is proportional to the square of the transfer impedance

coefficient.

If we consider the situation in which antenna B is transmitting and antenna A
is receiving, then the ratio of the absorbed powers in Z; connected to antenna A for
the two successive locations of antenna B would be the same as that given in Eq.
(11-106), except that Z,; would be replaced by Z,,. Because of the reciprocity rela-
tion Z,, = Z,,, we conclude that the directional pattern of an antenna for reception
is identical with that for transmission.

11-6.2 EFFECTIVE AREA

In discussing receiving antennas it is convenient to define a quantity called the
effective area." The effective area, A,, of a receiving antenna is the ratio of the average
power delivered to a matched load to the time-average power density (time-average
Poynting vector) of the incident electromagnetic wave at the antenna. We write

B P : (11-107)

where P; is the maximum average power transferred to the load (under matched
conditions) with the receiving antenna properly oriented with respect to the polariza-

' Also called effective aperture or receiving cross section.
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tion of the incident wave. We will now show that the effective arca bears a definite
relationship with the directive gain of an antenna.
When the load impedance is matched to the internal impedance,

ZL:Z: ; RB_.jXB' (]l IOS)
the maximum power delivered to the load is, from Eq. (11-105), ('a:*n'a[ (//—/03))
Z» - ;
: &o(Z) ——> P 12
Z; :/Zzz_ 8Ry

Let R, be the input resistance of transmitting antenna A. The transmitted power is
then

(11-109)

P, =3|Li|*R,. (@‘A H=7PQ)  (11-110)
Combining Eqgs. (11-109) and (11-110), we have 4

£ mr g

T (11-111)

When antenna B is receiving, the time-average power density at B depends on

=z Phe directive gain of transmitting antenna A in that direction:

o (r-22)

}‘%’ P, =

Using Eq. (11-112) in Eq. (11-107), we obtain

P
4—;5 (A (11-112)

PL B AeBGDA
F, = 4_79‘7:— (11-113)
Comparison of Eqgs. (11-111) and (11-113) yields
R RyA xG
e (11-114)

If antenna B is transmitting and antenna A is receiving, a similar derivation leads to

RBRAAeAGDB :

= : (11-115)

nr
Since Z,, = Z,,, Egs.(11-114) and (11-115) lead to the following important relation:

GDA i GDB :
AeA AeB

(11-116)

Inasmuch as we have not specified the types of transmitting and receiving antennas
in obtaining Eq. (11-116), we conclude that the ratio of the directive gain and the
effective area of an antenna is a universal constant. This constant can be found by
determining the directive gain and effective area of any antenna—for instance, those
of an elemental dipole as illustrated in the following example.
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smmmmn  XAMPLE 11-10 Determine the effective area, A,(0), of an elemental electric dipole

Ue = & dlsine == =3

R=4TR

of a length d¢ (<« 4) used to receive an incident plane clectromagnetic wave of wave-
length 4 that is polarized in a direction shown in Fig. 11-8.

Solution Let E; be the amplitude of the electric field intensity at an elemental dipole
of length d/. Then the time-average power density is

E?
= 277‘0 (11-117)

The average power delivered to a matched load (Z, = Z7) is

E;d/ sin 8 |* _(E dé’ sm"' 0

_Z_in** . W (11-118)

whesre R, = 80(nd//4)* has been given in Eq. (11-44). The ratio P,/Z,, gives the

effective area of the elemental dipole:

e

it
9&0_4& £)e sin” ¢

A[0) =

3 (11-119)
= — (A sin 6)? (m?).
87

It is interesting to note that the effective area of an elemental electric dipole is in-

dependent of its length. werel
From Example 11-2 we have G,(f) = 3 sin? 0 for an elemental electric dipole.

Thus,

5! )
G o8} = % in® @ = 4—2? (4 sin 0)?
. e (11-120)
s
= ;2_' Ae(g):

which indicates that the universal constant for Eq. (11-116) is 4rn/4?, and we may
write the following relation for an antenna under matched impedance conditions:

Gp(0, ¢) = mA (6, ¢) (Dimensionless). (11-121)

In the case of thin linear antennas the concept of effective area may seem ar-
bitrary. Nevertheless, its definition is useful in measuring the power available to a
particular antenna. Of course, we expect the effective area A4,(0) to be related to
the effective length /,(0). The available power to the antenna load under matched
conditions is

Ve =68y

R 8R, 8R,

(11-122)
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where the relation in Eq. (11-75) has been used. Substitution of Eqs. (11-117) and
(11-122) into Eq. (11-107) yields

* 30
A(0) = —R—TE 23(0). (11-123)

r

11-6.3 BACKSCATTER CROSS SECTION

As we saw in the preceding subsection, the concept of effective area pertains to the
power available to the matched load of a receiving antenna for a' given incident
power density. In cases in which the incident wave impinges on a passive object
whose purpose is not to extract energy from the incident wave but whose presence
creates a scattered field, it is appropriate to define a quantity called the backscatter
cross section, or radar cross section. The backscatter cross section of an object is
the equivalent area that would intercept that amount of incident power in order to
produce the same scattered power density at the receiver site if the object scattered
uniformly (isotropically) in all directions. Let

2, = Time-average incident power density at the object (W/m?),
2, = Time-average scattered power density at the receiver site (W/m?),
oy = Backscatter cross section (m?),

r = Distance between scatterer and receiver (m).

Then,
Ubs'?i
==l
4mr? .
or
= 4nr? =2 . 11-124
Jbs nr g’i (m) ( ]

Note that 2, is inversely proportional to r* for large r and that g,, does not change
with 7.

The backscatter cross section is a measure of the detectability of the object (target)
by radar (radio detection and ranging); hence the term radar cross section. It is a
composite measure, depending on the geometry, orientation, and constitutive param-
eters of the object, and on the frequency and polarization of the incident wave in a
complicated way.

EXAMPLE 11-11 A uniform plane wave with electric field intensity E;, = a_E; im-
pinges on a small dielectric sphere of radius b (« /) and dielectric constant ¢,, as
shown in Fig. 11-19. Assume the polarization produced in the sphere to be the same

E—i‘ (-éj) = %L[& e}'caﬂj
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FIGURE 11-19

Plane wave incident on a small dielectric sphere.
ERH= L[t S Lo D
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as that produced in a uniform static electric field E; and te be given by (see Problem
P.4-29)

= a,3€0(€' - I)Ei (C/m?). (Ho)

a) Find the backscatter cross section .
b) Determine a,, for a spherical raindrop of diameter 3 (mm) at 15 (GHz), assuming
the dielectric constant of water to be 55 at that frequency.

Solution

a) Since the induced polarization vector (the volume density of electric dipole mo-
ment) P.is constant within the dielectric sphere, the total electric dipole moment
induced in the sphere of radius b («4) is

p=4nb’P
- T <1 11-126
P-— @ 4L = 4L = az4nb3eo(ﬁ' )E,- (C-m). ; )
A ll-10) (W1 c
= Thus the dielectric sphere acts electromagnetically like an elemental electric di-
4 T pole of moment p given in Eq. (11-126). The scattered electric field intensity in
the far-zone is then, from Eq. (11-19b) and using Eqs. (11-10) and (11-11),
A, i
o wp (e ir :
L E = E = — P
il e.)(”z( s = Apll, 4 4?1( p )’?OB sin ¢
o= e o ) R A (11-127)
= —a,f%b> d E;sin 0 V/m).
X 7, /? same ((1-174) g ( r )(e,+2) Sl
The time-average backscattered power density is
1 b*(Bb)* (e, — 1)?
P.=—|Eft-rp = ! s W/m?). 11-128
s 2110 | s|B—n/2 2’70"2 c . 2 i ( /m ) . ( )

The time-average incident power density is

1
P, = — e (W/m?2). (11-129)
210
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Substitution of Eqgs. (11-128) and (11-129) in Eq. (11-124) yields the backscatter
cross section:

e — 1)
= 4nb?(pb)*| —— i} 11-130
Ops = 41 (ﬁ)(€r+2) (m~) ( )
b) For f = 15(GHz), A = 20 (mm), the radius of the raindrop b = 3 (mm) « 4. We
obtain
Grmsnln@fnsorl07 5 {m}
=le@So (mmi*),
which is a fraction of the geometrical cross section nh* of the sphere:
g 198 '
=——=0.177.
?Cbz 1.527[ 0 [

Of course, raindrops do not exist singly; nor is their shape strictly spherical.
Meaningful calculations of backscatter from rain require a knowledge of the rainfall
rate and the distribution of the drop size, which are mutually dependent. The assump-
tion of an equivalent spherical drop for nonspherical droplets has been found to be
acceptable as long as their sizes are much smaller than the wavelength. Of equal
importance to the calculation of backscatter from rainfall is the estimation of the
attenuation suffered by an electromagnetic wave propagating through rain due to an
imaginary part of the permittivity of raindrops. Interested readers should refer to the
literature for details. [13]

11-7 Transmit-Receive Systems

In the preceding section we discussed the concepts of effective area for receiving
antennas and backscatter cross section for scattering objects. We shall now examine
the power transmission relation between transmitting and receiving antennas. When
the same antenna is used for transmitting short pulses of radiation and for receiving
them after they have been reflected (scattered) back by a target, the transmit-receive
system is a radar; it is a special case. Measurement of the time elapsed At between
the transmitted pulse and the received pulse determines the distance r of the target
to the antenna site through the relation At = 2r/c, where ¢ is the velocity of light.

If the transmission path between the transmitting and receiving antennas is near
the earth’s surface, the effect of the conducting earth must be considered. We shall
also discuss the transmit-receive arrangement over a flat earth in this section.

11-7.1 FRIIS TRANSMISSION FORMULA AND RADAR EQUATION

Consider a communication circuit between stations 1 and 2 with antennas having
effective areas 4,, and A,,, respectively. The antennas are separated by a distance
r. We wish to find a relation between the transmitted and the received powers.
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Let Py and P, be the received and transmitted powers, respectively. Combining
Egs. (11 113) and (11 121), we obtain

.]_)l'z Aea &z Ay \[(4nA,,
P, 4nr ) "' 4nr? x

—. (11 131)

or

The relation in Eq. (11-131) is referred to as the Friis transmission formula. For a
given transmitted power the received power is directly proportional to the product
of the effective areas of the transmitting and receiving antennas and is inversely
proportional to the square of the product of the distance of separation and wave-
length.

Noting Eq. (11-121), we may write the Friis transmission formula in the following
alternative form:

P Gntiad”
;Lz T;{:; : (11-132)
t

The received power P, in Eqgs. (11-131) and (11-132) assumes a matched condition
and disregards the power dissipated in the antenna itself. From Eq. (11-131) we see
that for a‘given transmitted power the received power increases as the square of the
operating frequency (decreases as the inverse square of wavelength). But, at progres-
sively increasing frequencies, P, 1s limited by available technology, and the minimum
detectable power over electromagnetic noise also increases. It is incorrect to conclude
from Eq. (11-132) that P, increases as the square of the wavelength because the
directive gains usually decrease as the wavelength increases.

Now consider a radar system that uses the same antenna for transmitting short
pulses of time-harmonic radiation and for receiving the energy scattered back from
a target. For a transmitted power P, the power density at a target at a distance r
away is (see Eq. 11-112)

9T=4::,2GD(9: o), (11-133)
where G (0, @) is the directive gain of the antenna in the direction of the target. If g,
denotes the backscatter or radar cross section of the target, then the equivalent power
that is scattered isotropically is ¢, +, which results in a power density at the antenna
0, Pr/4nr?. Let A, be the effective area of the antenna. We have the following ex-
pression for the received power:
PL = Aogbs P—l:j

dnr
(11-134

P
= A O (47{'%)5 G0, ¢).
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By using Eq. (11-121), Eq. (11 134) becomes

PI o.h\')"z 2
p— T —— (" H. ; 35
I),. (47{)_ ,_4 ’D( (lb) ( I I l }

which is called the radar equation. In terms of the antenna cffective arca A, instead
of the directive gain G (), ¢). the radar equation can be written as

Py oy (A 3 11-136
P dni\h) i

Because radar signals have to make round trips from the aritenna to the target and
then back to the antenna, the received power is inversely proportional to the fourth
power of the distance r of the target from the antenna.

EXAMPLE 11-12 Assume that 50 (kW) is fed into the antenna of a radar system

operating at 3 (GHz). The antenna has an effective area of 4 (m~) and a radiation
efficiency of 90%. The minimum detectable signal power (over noise inherent in the
receiving system and from the environment) is 1.5 (pW). and the power reflection
coefficient for the antenna on receiving is 0.05. Determine the maximum usable range
of the radar for detecting a target with a backscatter cross section of 1 (m?).

Solution At f = 3 x 10° (Hz). 2 = 0.1 (m):
A, =4 (m?),
P, =090 x 5 x 10* =45 x 10* (W),

P, =15x 10-12( ): 1.58 x 10712 (W),

1 —0.05

g =1 W'}

4 G-lbsA;"2 Pt
r = PG e L)
4l \ P

r =436 x 10* (m) = 43.6 (km). e

From Eq. (11-136).

and

A satellite communication system makes use of satellites traveling in orbits in the
earth’s equatorial plane. The speed of the satellites and the radius of their orbits are
such that the period of rotation of the satellites around the earth is the same as that
of the earth. Thus the satellites appear to be stationary with respect to the earth’s sur-
face, and they are said to be geostationary. The radius of the geosynchronous orbit
is 42,300 (km). With an earth radius of 6380 (km) the satellites are about 36,000 (km)
from the carth’s surface.
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Signals arc transmitted from a high-gain antenna at an earth station toward a
satellite, which receives the signals, amplifies them, and retransmits them back toward
the carth station at a different frequency. Three satellites equally spaced around the
geosynchronous orbit would cover almost the entire earth’s surface except the polar
regions (sce Problem P.11 27). A quantitative analysis of the power and antenna
gain relations for a satellite communication circuit requires the application of the Friis
transmission formula twice, once for the uplink (carth station to satellite) and once
for the downlink (satellite to carth station).

11-7.2 WAVE PROPAGATION NEAR EARTH'S SURFACE

Consider a transmitting antenna A at a height h, and a receiving antenna B at a
height h, above the flat earth’s surface with a distance of separation d, as shown in
Fig. 11-20. If antenna A is an elemental electric dipole, then the electric field intensity
at B is the sum of the direct contribution E;, from A4 and the indirect contribution
E,, after reflection at point C. We write

E = Eq + Ey,, (11-137)

where the magnitudes of E,, and E,, are

e IRY
Eq = K( R )sm 0, (11-137a)
2 e JAR .
Eyp =K R )sm o' (11-137b)

The constant K equals jI d/n,f/4n (see Eq. 11-19b), and the distance R’ = AC +
CB = A'B. The effect of the perfectly conducting (assumed) earth’s surface is replaced
by an image antenna at A'. In the general case, E;; and E,, are not parallel; but if
d > hy, hy, then 6 = ¢, and Egs. (11-137a) and (11-137b) may be combined to give

—JBR

E, ~a,K (e

)(sin O)F, (11-138)

FIGURE 11-20
Transmit-receive system near the
earth’s surface.
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where
F=1+e #R-R (11-139)
The distances
R =[d*+ (h, — U

(hy, — h))* |12 (h, — h,)? (11-140a)
- 1 e e ~ e
d]: o d? et 2d
and
: hy, + hy)?
R =[d*+(h, + h))]'P=d+ (—7% (11-140b)
yield approximately
(h, + h))*  (hy — hy)?
R —R = - —
2d 2d :
(L1-141)
_ 2hyh,
e
Substituting Eq. (11-141) in Eq. (11-139), we obtain
(Pl = [ 4 ¢ PG (11-142)
which is like the array factor of a two-element array.
Equation (11-142) may be written as
|F| = e~ IPhhatd(giPhibali 4 o~ ibMMaIfY} = Dlcos (Znii(;hz) . (11-143)

Equation (11-143) shows that for fixed values of 7, and 4 the electric field intensity
E, at the receiving site B will have nulls and maximum values as the ratio h,/d is
changed. The quantity |F| varies from 0 to 2 and is called the path-gain factor.
Calculation of the path-gain factor for a spherical earth is a much more involved
task.

11—-8 Some Other Antenna Types

Practical antennas take many different shapes and sizes, each designed to fulfill certain
desired performance characteristics. Our attention so far has been focused on the
radiation properties of linear antennas having a current distribution in the form of
a standing wave. In this section we shall discuss several other types of antennas of
practical importance.

11-8.1 TRAVELING-WAVE ANTENNAS

In the analysis of thin linear antennas in Section 11-4 we assumed that the center-
driven dipole antennas were not terminated and that the currents from the excitation
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