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Hence only two of the three parameters are independent. Because of the scaling rela-
tions in Egs. (11-152) and (11-154), a change in the operating frequency changes
only the particular dipole whose length is a certain fraction of a wavelength.” The
remarks pertaining to Eqs. (11-150), (11-151a), and (11 151b) apply, and we have a
log-periodic dipole array.

The array is usually fed by a source connected to a transmission line. An impor-
tant discovery is that neighboring elements must be fed at opposite phases. This is
accomplished by transposing the wires of the transmission line leading to alternate
dipoles, as illustrated in Fig. 11-30. At the operating frequency the active region of
the array consists mainly of the several dipoles whose lengths are approximately a
half-wavelength and where the dipole currents are large. The currents in the dipoles
outside this region are relatively very small. The array operates in an end-fire fashion
with its main beam of radiation in the direction of short dpoles.

11-9 Aperture Radiators

Our analysis of the radiation characteristics of antennas has generally proceeded from
a current distribution on the antenna structure. From the current distribution the
retarded vector potential is determined by using Eq. (11-3). The magnetic and electric
field intensities can then be found from Egs. (11-1) and (1 1-6), respectively. In many
cases, electromagnetic radiation may be viewed as emanating from an opening or an
aperture in a conducting enclosure. To be sure, the source of radiation can always
be traced to some time-varying currents somewhere; but the current distributions are
often unknown and difficult to determine or approximate. Such radiating systems
are quite unlike dipole antennas and must be analyzed in a different way. They are
aperture radiators or aperture antennas. Examples are slots, horns, reflectors, and
lenses. some of which are illustrated in Fig. 11-31.

In our analysis we will use an approximate aperture-field method, assuming that
electric and magnetic fields exist only in the aperture area and that the field elsewhere
in an infinite screen containing the aperture is zero. In the case of the slot radiator
shown in Fig. 11-31(a), the field for dominant TE,,-mode excitation is usually as-
sumed to be a half-sine having a maximum at the center of the slot and tapering to
zero at the edges. For the horn in Fig. 11-31(b) the aperture field is derived from the
waveguide mode propagating into a horn of infinite extent. The aperture fields of
the reflector in Fig. 11-31(c) and the lens in Fig. 11-31(d) are found by methods
of geometrical optics from the reflection and refraction of rays emanating from the
primary feed.

For TE, ,-mode excitation the field in a plane aperture is approximately linearly
polarized, and deviations from the results obtained by geometrical optics are small.

! Strictly speaking, it is also necessary to scale the radius a, of the dipoles according to a,. ,/a, = 1.
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(a) Slot. (b) Horn.

| :
Aperture Aperture FIGURE 11-31
(c) Reflector. (d) Lens. Aperture antennas.

With a nearly uniform phase over the aperture, the far-zone field is a two-dimensional
Fourier integral of the field distribution in the aperture. Let the electric field dis-

tribution in the aperture outlined in Fig. 11-32 be linearly polarized, say in the x-
direction, with no phase variation:

>(A'n¢/aq, Co;,J,{?’rfd)ﬂ - 18, = ALJE K% }) (11-157)

J/he aperture dimensions are large in comparison to the operating wave length, then
almostalltemf‘tfhmt%Jﬁeld will be contained in a small angular region
around the z-axis, and the far-zone electric field at a distant point P(R,, 6, ¢) can be
written as Ep = a E,. where [13], [25]

G-ro5)

ﬁ oUNs e j i
VC+ e E} 6 \——=x Epg"‘Ta{iEa(\ Ve IR gy’ dy. (11-158)
V' E/:’ S For SR ;/’;\?’;f;};”; - e jk
R =R, —(ax"+a,)) - (a,sin 0 cos ¢ + a, sin 0 sin )+ &, Loliglg%
= Ry, — (X" sin 0 cos ¢ + )’ sin 0 sin ¢).
Substitution of Eq. (11-159) in Eq. (11-158) yields
E;= u]z e IEROE(Q, ), (11-160)
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where
F(6. ¢) = f P e e e R LT T T (11=161)
aper.
is the pattern function of the aperture antenna. Equation (11—161) expresses the

rather simple relation between the aperture distribution and the pattern function;
ndmdy they are the Fourier transform of cach other. The inverse relation, cxpressing
E(x".y") in terms of F(6, ¢) enables us to determine the aperture ficld required for a
spccmcd pattern funcUon. This is a synthesis problem.

Forarectangular aperture with dimensions a x b and separable field distributions:

E (X", y) = [i(xX)()), : (11-162)

the pattern function in Eq. (I1-161) is also separable:

b/2
F((), d)) — fl )ej/}\ 51110L09¢d J'/ J/;\ sin 0 \m(/;d / (11*163)

=al2

If we are interested only in the patterns in the principal planes. Eq. (11-163) can be
further simplified.

1. In the xz-plane, ¢ = 0:

F\:(H) = lif_b/z fz(yl) dy’:l fl( e]ﬂ\ sin Hd\

b/2
! (11-164)

= C, fa/“ i)™ Sulgs

where C, is a constant. We see that the radiation pattern in the xz-plane depends
only on the aperture field distribution in the x'-direction.

2. In the yz-plane, ¢ = w/2:

F\.:(e){ e } [ fayyeir in gy

b/2
(11-165)

b/Z N\ ,,jBy sin 7
= €5 |10 fly)e® #0gy,

bj2

2 P (Ro,6, ¢)

FIGURE 11-32
Pattern calculation from aperture-field distribution.
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where C, is a constant. The radiation pattern in the yz-planc depends only on
the aperture-field distribution in the y'-direction.

The directivity of an aperture radiator is obtained by using Eq. (11-35),
which for convenience, is repeated below:

4nU .
D= _n]‘}}’ [ 1=166
P, (11~=166)
where
o B : 1 -
=R, Unax = 3, RE o
{ 2 (11-167)
2 ‘ —_ O £ o) ’ ¥
U,mp\-x éUAr & ——2’70/12 a{!: E (x', y)dx'dy
and
P, = Total power radiated
1 - . 11-168
=% ff ‘Ea(x,y)fzdx d»\". ( )

aper.

Combining Egs. (11-166), (11-167), and (11-168), we have

[ Edx, y)ax ay

aper.

2
o |
S B i dy

aper.

(Dimensionless). (11-169)

It is interesting to note that, when E(x', ) = a constant (uniform aperture-field
%iétribution), D is a maximum and equals 47/, times the area of the aperture.
is is in agreement with Eq. (11-121).

mmmmssm  EXAMPLE 11-13 For an a x b rectangular aperture with a uniform field distri-
bution, find (a) the pattern function in a principal plane, (b) the half-power beamwidth,
(c) the location of the first nulls, and (d) the level of the first sidelobes,

Solution For simplicity we set E (x, y) = 1. = ][; ch) ﬁ(yf) ‘

a) The pattern function in a principal plane can be found from either Eq. (11-164)
or Eq. (11-165). In the xz-plane (¢ = 0) we have, from Eq. (11-164)

4

1 23 7 sz(g) = b j/az/z ejﬂx' Sinedx/
~ 2 - ab(sin l//> (11-170)
[ﬁ 9
where
¢=7;—asin 6. (11-171)

N o o .
}\f[ Ea J)g/g///’ - </] 42'/0/7 , \//\/E-o\/z"/x/c//, (QAQM/ 3 ’{”Zy’)
= 57:/6 ) )}a 12 GALA_

WP = EX g on W20
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Exactly the same pattern function is obtained for F,(0) in the other principal
planc (¢ = n/2) except that b will replace a in Eq. (11~171). Note that the pattern
function in Eq. (11—170) is similar to the array factor of a uniform lincar array
given in Eq. (11 -89) when  is small.

b) The half-power points are determined by setting

sl 5 |

Vi —7—2»’

from which we find

N S2n
7—7,\2 (e) = aé(——}zﬁ) Wi s z?sin 0,,=139

o

TC £
e e '\« e ) 'L &
7L = i B sin 8, = 0.442%. (1013

For sufficiently large apertures, sin 0, , is nearly equal to 0, ,," and the half-power
beamwidth is approximately

A
20,,; = 0.88 - (rad)

A
>~ 50 - (deg).
a

¢) The first null occurs at

¢711 i % Sin Gnl a8
or
. A
g, =0, = = (rad). (11-173)

d) The location of the first sidelobes is found by setting

¢ (siny
A,

which requires tan {y; = ¥, or ; = +1.43n. Thus,

sin Y/, sin 1.43n
— =217,
/3 1.43n
Referring to unity at y = 0, we find that the first sidelobes are 20 log,, (1/0.217) =
13.3 (dB) down from the level of maximum radiation. —

' For example, when a = 54, sin 0,,, = 0.442/5 = 0.0884 and 0,,, = sin"' (0.0884) = 0.0885, an error of
only 0.11%. The narrow beamwidth of the main lobe confirms our previous statement that almost all of
the radiated energy is confined in a small angular region around the z-axis.
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mmmmmn  LNAMIPLE 1114 A lincarly polarized uniform clectric field £, = a_E, exists in a
circular aperture of radius b in a conducting planc at z = 0. Assuming b to be large in
comparison to wavelength, (a) find an expression for the far-zone clectric field, and (b)
determine the width of the main beam between first nulls.

Solution

a) Fora circular aperture we use polar coordinates X' = p’ cos ¢, y' = p’ sin ¢, and

b)

X' COos ) + ) sin ¢ = p'(cos P cos P’ + sin ) sin ¢') = p(cos (¢ — ¢'). The inte-
grand in Eq. (11=161) is to be integrated over the circular aperture. We have

F((‘), (/)) = EO f: fozn ej/fp' sin 0 cos (4)74;’)‘0/ (1(/), (1/)/

=B fo’ 21d o(Bp’ sin O)p’ dp’
J(Bb sin 0)
= Eo2mb?| “——
o [ Bb sin 0 }

where J (1) is the Bessel function of the first kind of the first order. The far-zone
electric field is then, from Eq. (11-160),

2nb? ! AETE
PR I o i AR 1 o
p=ajL, ARO I: % 5 (11-175)
where
2nh
u=pb sinH:%sin 6, (11-176)

The first null of the radiation pattern occurs at the first zero. u,,, of J,(u). From
Table 10-2 we find u,;, = 3.832, which corresponds to an angle

e Y
= n e
= b - Onb

(11-177)

1.22% (rad),

where D = 2b is the diameter of the circular aperture. Hence the width of the main
beam between the first nulls is 20, = 2.444/D (rad). Comparing 6, in Eq. (11-177)
with 6,, in Eq. (11-173) for a rectangular aperture with width a equaling the
diameter D of the circular aperture, we find that the main-lobe beamwidth for the
circular aperture is wider. On the other hand, the first sidelobe level for the circular
aperture is found to be 0.13, which is 20 log,, (1/0.13) = 17.7 (dB) down from the
maximum radiation. This is lower than the 13.3 (dB) first sidelobes for the rect-
angular aperture with a = D. e

' We have made use of the following two integral relations:

I

2n

)

eIy = 2nd o(w) and fw.l(,(w) dw = wJ (w).

V4

e

o+ T

Jor ang §ER

(11-174)
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In this scction we have considered the radiation propertics of only relatively simple
) I

cases of rectangular and circular apertures in conducting planes. The analysis of other
aperture-type antennas such as horns, reflectors, and lenses is more diflicult and re-
quires the use of more advanced concepts. Slots cut in the walls of a waveguide that
interrupt current flow will radiate. Suitably arranged, they will form antenna arrays
in a manner analogous to dipole arrays. These and other radiation problems arc
topics for more specialized books on antennas [97], [11] [13].
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Questions

R.11-1 Give a general definition for antenna.
R.11-2 Why are antennas important for wireless communication over long distances?

R.11-3 State the procedure for finding the electromagnetic field due to an assumed time-
harmonic current distribution on an antenna structure.

R.11-4 What is a Hertzian dipole?

R.11-5 What constitutes an elemental magnetic dipole?

R.11-6 Define the near zone and the far zone of an antenna.

R.11-7 Why are the near-zone fields called quasi-static fields?
R.11-8. Explain how the magnitude of far fields varies with distance.

R.11-9 In what ways does the electromagnetic field of a radiating magnetic dipole differ from
that of a Hertzian dipole?

R.11-10 What are radiation fields?

R.11-11 Define antenna pattern.

R.11-12 Describe the E-plane and H-plane patterns of a Hertzian dipole.
R.11-13 Define beamwidth of an antenna pattern.

R.11-14 Define sidelobe level of an antenna pattern.

R.11-15 Define radiation intensity.

R.11-16 Define directive gain and directivity of an antenna.

R.11-17 Define power gain and radiation efficiency of an antenna.
R.11-18 Define radiation resistance of an antenna.

R.11-19 Discuss how the ratios (a/4) and (d//2) of a Hertzian dipole affect its radiation resis-
tance and radiation efficiency.

R.11-20 Describe the radiation pattern of a half-wave dipole antenna.
R.11-21 What are the radiation resistance and directivity of a half-wave dipole antenna?
R.11-22 What is the image of a horizontal dipole over a conducting ground?

R.11-23 What are the radiation resistance and directivity of a vertical quarter-wave monopole
over a conducting ground?
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In the preceding chapter we studied the characteristic properties of transverse elec-
tromagnetic (TEM) waves guided by transmission lines. The TEM mode of guided
waves is one in which the electric and magnetic fields are perpendicular to each other
and both are transverse to the direction of propagation along the guiding line. One
of the salient properties of TEM waves guided by conducting lines of negligible
resistance is that the velocity of propagation of a wave of any frequency is the same
as that in an unbounded dielectric medium. This was pointed out in connection with
Eq. (9-21) and was reinforced by Eq. (9-72).

TEM waves, however, are not the only mode of guided waves that can propagate
on transmission lines; nor are the three types of transmission lines (parallel-plate,
two-wire, and coaxial) mentioned in Section 9-1 the only possible wave-guiding
structures. As a matter of fact, we see from Egs. (9-55) and (9-63) that the attenuation
constant resulting from the finite conductivity of the lines increases with R, the
resistance per unit line length, which, in turn, is proportional to \/j7 in accordance
with Tables 9-1 and 9-2. Hence the attenuation of TEM waves tends to increase
monotonically with frequency and would be prohibitively high in the microwave
range.

In this chapter we first present a general analysis of the characteristics of the
waves propagating along uniform guiding structures. Waveguiding structures are
called waveguides, of which the three types of transmission lines are special cases.
The basic governing equations will be examined. We will see that, in addition to
transverse electromagnetic (TEM) waves, which have no field components in the
direction of propagation, both transverse magnetic (TM) waves with a longitudinal
electric-field component and transverse electric (TE) waves with a longitudinal
magnetic-field component can also exist. Both TM and TE modes have characteristic
cutoff frequencies. Waves of frequencies below the cutoff frequency of a particular
mode cannot propagate, and power and signal transmission at that mode is possible
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only for frequencies higher than the cutoff frequency. Thus waveguides operating in
TM and TE modes are like high-pass filters.

Also in this chapter we will reexamine the field and wave characteristics of
parallel-plate waveguides with emphasis on TM and TE modes and show that all
transverse field components can be expressed in terms of E, (z being the direction of
propagation) for TM waves and in terms of H, for TE waves. The attenuation
constants resulting from imperfectly conducting walls will be determined for TM and
TE waves, and we will find that the attenuation constant depends, in a complicated
way, on the mode of the propagating wave, as well as on frequency. For some modes
the attenuation may decrease as the frequency increases; for other modes the atten-
uation may reach a minimum as the frequency exceeds the cutoff frequency by a
certain amount.

Electromagnetic waves can propagate through hollow metal pipes of an arbitrary
cross section. Without electromagnetic theory it would not be possible to explain
the properties of hollow waveguides. We will see that single-conductor waveguides
cannot support TEM waves. We will examine in detail the fields, the current and
charge distributions, and the propagation and attenuation characteristics of rectan-
gular and circular cylindrical waveguides. Both TM and TE modes will be discussed.

Electromagnetic waves can also be guided by an open dielectric-slab waveguide.
The fields are essentially confined within the dielectric region and decay rapidly away
from the slab surface in the transverse plane. For this reason the waves supported
by a dielectric-slab waveguide are called surface waves. Both TM and TE modes are
possible. We will examine the field characteristics and cutoff frequencies of those
surface waves. Cylindrical optical fibers will also be discussed.

At microwave frequencies, ordinary lumped-parameter elements (such as induc-
tances and capacitances) connected by wires are no longer practical as circuit elements
or as resonant circuits because the dimensions of the elements would have to be
extremely small, because the resistance of the wire circuits becomes very high as a
result of the skin effect, and because of radiation. We will briefly discuss irises and
posts as waveguide reactive elements. A hollow conducting box with proper dimen-
sions can be used as a resonant device. The box walls provide large areas for current
flow, and losses are extremely small. Consequently, an enclosed conducting box can
be a resonator of a very high Q. Such a box, which is essentially a segment of a
waveguide with closed end faces, is called a cavity resonator. We will discuss the
different mode patterns of the fields inside rectangular as well as circular cylindrical
cavity resonators.

10-2 General Wave Behaviors along Uniform Guiding Structures

In this section we examine some general characteristics for waves propagating along
straight guiding structures with a uniform cross section. We will assume that the
waves propagate in the + z-direction with a propagation constant y = o + jf that is
yet to be determined. For harmonic time dependence with an angular frequency w,
the dependence on z and ¢ for all field components can be described by the exponential
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FIGURE 10-1
A uniform waveguide with an arbitrary
cross section.

factor
e VEplot e(‘;wt—yz) = e—azej(wt—ﬁz). (10__1)

As an example, for a cosine reference we may write the instantaneous expression for
the E field in Cartesian coordinates as

E(x, y, z; t) = R[E(x, y)elie—19], (10-2)

where E°(x, y) is a two-dimensional vector phasor that depends only on the cross-
sectional coordinates. The instantaneous expression for the H field can be written in
a similar way. Hence, in using a phasor representation in equations relating field
quantities we may replace partial derivatives with respect to ¢ and z simply by prod-
ucts with (jw) and (—7y), respectively; the common factor V' ™72 can be dropped.
We consider a straight waveguide in the form of a dielectric-filled metal tube
having an arbitrary cross section and lying along the z-axis, as shown in Fig. 10-1.
According to Egs. (7-105) and (7-106), the electric and magnetic field intensities in
the charge-free dielectric region inside satisfy the following homogeneous vector
Helmholtz’s equations:
VE + k2E%= 0 (10-3)
and
V2H’+ k2H’= 0, (10-4)

where E and H are three-dimensional vector phasors, and k is the wavenumber:

k = w+/pe. (10-5)

The three-dimensional Laplacian operator V2 may be broken into two parts:
V2 ., for the cross-sectional coordinates and V2 for the longitudinal coordinate. For
waveguides with a rectangular cross section we use Cartesian coordinates:

52
V2E = (V, + VIE = <V§y + b?)E

(10-6)
= VZE + y’E.
Combination of Egs. (10-3) and (10-6) gives

° o
VZE+(* + K)E=0. (10-7)
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Similarly, from Eq. (10-4) we have
53 9 o
ViZH + (2 + k)H = 0. (10-8)

We note that each of Egs. (10-7) and (10-8) is really three second-order partial
differential equations, one for each component of E and H. The exact solution of
these component equations depends on the cross-sectional geometry and the bound-
ary conditions that a particular field component must satisfy at conductor-dielectric

interfaces. We note further that by writing V7, for the transversal operator V2, Egs.

xy»
(10-7) and (10-8) become the governing equations for waveguides with a circular
Cross section. :

Of course, the various components of E and H are not all independent, and it
1s not necessary to solve all six second-order partial differential equations for the six
components of E and H. Let us examine the interrelationships among the six com-
ponents in Cartesian coordinates by expanding the two source-free curl equations,

Egs. (7-104a) and (7-104b):

FromV x E = —jouH: From V x H = jweE:
%};}2 + yE) = — jouH? (10-9a) f};? + yH? = jweE? (10-10a)
—yE? — 651;35 = —jouH? (10-9b) —yHY — %%2 = jweE]  (10-10b)
aa_ig = '3;:) = —jouH® (10-9¢) ‘(Ii . 6_(131}2 = jweE? (10-10c)

Note that partial derivatives with respect to z have been replaced by multiplications
by (—7). All the component field quantities in the equations above are phasors that
depend only on x and y, the common e~ ?* factor for z-dependence having been
omitted. By manipulating these equations we can express the transverse field com-
ponents HY, Hy, and E2, and E? in terms of the two longitudinal components E?
and H?. For instance, Eqs. (10-9a) and (10-10b) can be combined to eliminate EY
and obtain HY in terms of E2 and H®. We have

1 oH? OE?

0 o Cofe om0 L 1011

H? i () 5 e 3 ), ( )
1 OH? OE?

B \ L+ joe —= ), 10-12

) 7 Y P + jwe o ) ( )
1 eF cH?

A ol ; z 10-13

= l 68 - g
E} = —— ”””‘T—J‘“#“’x_ ! (10-14)
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where
h? = y2 + k2, (10-15)

The wave behavior in a waveguide can be analyzed by solving Egs. (10-7) and (10-8)
for the longitudinal components, E? and H?, respectively, subject to the required
boundary conditions, and then by using Egs. (10-11) through (10-14) to determine
the other components.

It is convenient to classify the propagating waves in a uniform waveguide into
three types according to whether E, or H, exists.

1. Transverse electromagnetic (TEM ) waves. These are waves that contain neither
E. nor H,. We encountered TEM waves in Chapter 8 when we discussed plane
waves and in Chapter 9 on waves along transmission lines.

2. Transverse magnetic ( TM ) waves. These are waves that contain a nonzero E. but
H. =0

3. Transverse electric (TE) waves. These are waves that contain a nonzero H, but
E_ =

The propagation characteristics of the various types of waves are different; they will
be discussed in subsequent subsections.

10-2.1 TRANSVERSE ELECTROMAGNETIC WAVES

Since E. = 0 and H, = 0 for TEM waves within a guide, we see that Egs. (10-11)
through (10-14) constitute a set of trivial solutions (all field components vanish)
unless the denominator h? also equals zero. In other words, TEM waves exist only
when

7iem + k2 =0 (10-16)
or

Y1em = jk = jo/ e, (10-17)

which is exactly the same expression for the propagation constant of a uniform plane
wave in an unbounded medium characterized by constitutive parameters € and 1
We recall that Eq. (10-17) also holds for a TEM wave on a lossless transmission
line. It follows that the velocity of propagation (phase velocity) for TEM waves is

w 1
Upremy = - = 0 (m/s). (10-18)

We can obtain the ratio between E? and H{ from Egs. (10-9b) and (10-10a) by
setting E, and H_ to zero. This ratio is called the wave impedance. We have

0 .

0 To i . &
H} yregm Jwe

Zrgm =
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which becomes, in view of Eq. (10-17),

Zgm = /-/;ﬁ = @) (10-20)

We note that Zp,, is the same as the intrinsic impedance of the dielectric medium,
as given in Eq. (8-30). Equations (10-18) and (10-20) assert that the phase velocity

and the wave impedance for TEM waves are independent of the frequency of the
waves.

Letting E? = 0 in Eq. (10-9a) and H® = 0 in Eq. (10-10b), we obtain

E° u
?1% = —Zpy= _\E. (10-21)

Equations (10-19) and (10-21) can be combined to obtain the following formula for
a TEM wave propagating in the + z-direction:

H = a, x E (A/m), (10-22)

TEM

which again reminds us of a similar relation for a uniform plane wave in an un-
bounded medium—see Eq. (8-29).

Single-conductor waveguides cannot support TEM waves. In Section 6-2 we
pointed out that magnetic flux lines always close upon themselves. Hence if a TEM
wave were to exist in a waveguide, the field lines of B and H would form closed loops
in a transverse plane. However, the generalized Ampére’s circuital law, Eq. (7-54b),
requires that the line integral of the magnetic field (the magnetomotive force) around
any closed loop in a transverse plane must equal the sum of the longitudinal conduc-
tion and displacement currents through the loop. Without an inner conductor there
is no longitudinal conduction current inside the waveguide. By definition, a TEM
wave does not have an E,.-component; consequently, there is no longitudinal dis-
placement current. The total absence of a longitudinal current inside a waveguide
leads to the conclusion that there can be no closed loops of magnetic field lines
in any transverse plane. Therefore, we conclude that TEM waves cannot exist in a
single-conductor hollow (or dielectric-filled) waveguide of any shape. On the other
hand, assuming perfect conductors, a coaxial transmission line having an inner con-
ductor can support TEM waves; so can a two-conductor stripline and a two-wire
transmission line. When the conductors have losses, waves along transmission lines
are strictly no longer TEM, as noted in Section 9-2.

10-2.2 TRANSVERSE MAGNETIC WAVES

Transverse magnetic (TM) waves do not have a component of the magnetic field in
the direction of propagation, H, = 0. The behavior of TM waves can be analyzed
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by solving Eq. (10-7) for E. subject to the boundary conditions of the guide and
using Eqs. (10—11) through (10-14) to determine the other components. Writing Eq.
(10-7) for E,, we have

VZ,E? + (72 + kHE® = 0 (10-23)
or

B PE) = 0. (10-24)

Equation (10-24) is a second-order partial differential equation, which can be solved
for E2. In this section we wish to discuss only the general properties of the various
wave types. The actual solution of Eq. (10-24) will wait until subsequent sections
when we examine particular waveguides.

For TM waves we set H, = 0 in Egs. (10-11) through (10-14) to obtain

jwe OE?
T -2
Ap—— i
e jwe OE?
Hine e (10-26)
3 AR
B e ~2 (10-27)
y gt
Ed= -5 =, 10-28
It is convenient to combine Egs. (10-27) and (10-28) and write
(EQ)ry = 2,E0 + 2,EC = -hz Y (10-29)
where
o 0
¥V B = (ax =5 ——C~—-> (10-30)
0x g

denotes the gradient of E? in the transverse plane. Equation (10-29) is a concise
formula for finding E? and E from E?.

The transverse components of magnetic field intensity, H and H?, can be deter-
mined simply from E® and E? on the introduction of the wave impedance for the
TM mode. We have, from Egs. (10-25) through (10-28),

R Sy iy (10-31)

It is important to note that Zyy, is not equal to jowpu/y, because y for TM waves, unlike
Y1EM, IS 1ot equal to jw+/pe. The following relation between the electric and magnetic
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field intensities holds for TM waves:

- .—_-; H= L(a, xE) (A/m). (10-32)
ZTM

Equation (10-32) is seen to be of the same form as Eq. (10-22) for TEM waves.

When we undertake to solve the two-dimensional homogeneous Helmholtz equa-
tion, Eq. (10-24), subject to the boundary conditions of a given waveguide, we will
discover that solutions are possible only for discrete values of h. There may be an
infinity of these discrete values, but solutions are not possible for all values of h. The
values of h for which a solution of Eq. (10-24) exists are called the characteristic
values or eigenvalues of the boundary-value problem. Each of the eigenvalues deter-
mines the characteristic properties of a particular TM mode of the given waveguide.

In the following sections we will also discover that the eigenvalues of the various
waveguide problems are real numbers. From Eq. (10-15) we have

y = Jh? — k2

= \/h* — w’ue.

Two distinct ranges of the values for the propagation constant are noted, the dividing
point being y = 0, where

(10-33)

w? e = h? (10-34)
or

h

21t\/,u-€

h= (Hz). (10-35)

The frequency, f, at which y = 0 is called a cutoff frequency. The value of f. for a
particular mode in a waveguide depends on the eigenvalue of this mode. Using Eq.
(10-35), we can write Eq. (10-33) as

2
y=h [1-— (;ﬁ) . (10-36)

The two distinct ranges of y can be defined in terms of the ratio ( f/f.)? as compared
to unity.

2
a) (f) > 1, or f > f. In this range, w?ue > h? and 7 is imaginary. We have, from

i
h 3 2
7=jﬁ=jk “_(E> =k /1—(‘%). (10-37)

Eq. (10-33),
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It is a propagating mode with a phase constant f:

2
Bi=kofl— (l;‘—) (rad/m). (10-38)
The corresponding wavelength in the guide is
- 2n / .
Ay=— = 7o (10-39)

B - (f;/f? >
where

2n u
i=""= =~ (10-40)

1
k fdue [
is the wavelength of a plane wave with a frequency f in an unbounded dielectric
medium characterized by y and €, and u = 1/\/’;; is the velocity of light in the
medium. Equation (10-39) can be rearranged to give a simple relation connecting
4, the guide wavelength #,, and the cutoff wavelength 4, = u/f.:
1 1 1

F=E+E. (10-41)

The phase velocity of the propagating wave in the guide is

w u A
u =—$j:£ u>u. (10742)

B 1=l A

We see from Eq. (10-42) that the phase velocity within a waveguide is always
higher than that in an unbounded medium and is frequency-dependent. Hence
single-conductor waveguides are dispersive transmission systems, although an
unbounded lossless dielectric medium is nondispersive. The group velocity for a
propagating wave in a waveguide can be determined by using Eq. (8-72):

—— 1 AN < 10-43
“= jder " £ R S

U, = w* (10-44)

Thus,

For air dielectric, u = ¢, Eq. (10-44) becomes u,u, = ¢ In a lossless waveguide
the velocity of signal propagation (the velocity of energy transport) is equal to the
group velocity. An illustration of this statement can be found later, in Subsection
10-3.3.

Substitution of Eq. (10-37) in Eq. (10-31) yields

i

f‘ 2
Zra=n 1= () (Q). (10-45)
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FIGURE 10-2
‘ 3 Normalized wave impedances for propagating
fife TM and TE waves.

The wave impedance of propagating TM modes in a waveguide with a lossless
dielectric is purely resistive and is always less than the intrinsic impedance of the
dielectric medium. The variation of Zyy versus f/f, for f > f, is sketched in Fig.

10-2.
f 2
b) (f) < 1, or f< f.. When the ope/;ating frequency is lower than the cutoff fre-
qilency, y is real and Eq. (10-36) can be written as
f 2
p=w=4 1—(7), f<tfo (£0=46)

which is, in fact, an attenuation constant. Since all field components contain the
propagation factor e™’* = ¢~ *, the wave diminishes rapidly with z and is said
to be evanescent. Therefore, a waveguide exhibits the property of a high-pass
filter. For a given mode, only waves with a frequency higher than the cutoff fre-
quency of the mode can propagate in the guide.

Substitution of Eq. (10-46) in Eq. (10-31) gives the wave impedance of TM
modes for f < f.:

LN P A
Ziw= —j e 1 (fc) . f= (10-47)

Thus, the wave impedance of evanescent TM modes at frequencies below cutoff is
purely reactive, indicating that there is no power flow associated with evanescent

waves.

10-2.3 TRANSVERSE ELECTRIC WAVES

Transverse electric (TE) waves do not have a component of the electric field in the
direction of propagation, E. = 0. The behavior of TE waves can be analyzed by first
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solving Eq. (10-8) for H,:

Vi H.+ h*H_=0. (10-48)

Proper boundary conditions at the guide walls must be satisfied. The transverse field
components can then be found by substituting H, into the reduced Egs. (10-11)
through (10-14) with E_ set to zero. We have

HO = _hizz—}? (10-49)
Hie= _];LZ 553, (10-50)
EO — _f]‘:’_f %H?O (10-51)
£y =122 %I: (10-52)

Combining Eqgs. (10-49) and (10-50), we obtain

7

(H?')TE = ang * a_‘,H;’ = ]

V. H? (A/m). (10-53)

We note that Eq. (10-53) is entirely similar to Eq. (10-29) for TM modes.

The transverse components of electric field intensity, E? and E?, are related to
those of magnetic field intensity through the wave impedance. We have, from Egs.
(10-49) through (10-52),

Zep=—= —L =" (Q). (10-54)

. S Ll =
Note that Zyg in Eq. (10-54) is quite different from 2y, in Eq. (10-31) because y
for TE waves, unlike ygy, is not equal to jw \/E. Equations (10-51), (10-52), and
(10—-54) can now be combined to give the following vector formula:

Q == E=—Z(a, x H) (V/m). (10-55)

Inasmuch as we have not changed the relation between y and h, Egs. (10-33)
through (10-44) pertaining to TM waves also apply to TE waves. There are also
two distinct ranges of y, depending on whether the operating frequency is higher or
lower than the cutoff frequency, f,, given in Eq. (10-35).
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2
a) (f) > 1, or f > f.. In this range, y is imaginary, and we have a propagating

Je
mode. The expression for y is the same as that given in Eq. (10-37):
2
v=jBf=jk [1— G) : (10-56)

Consequently, the formulas for j, 4gs Uy, and u, in Egs. (10-38), (10-39), (10-42),
and (10-43), respectively, also hold for TE waves. Using Eq. (10-56) in Eq.
(10-54), we obtain

n

e (),
=r=unr

which is obviously different from the expression for Zy,, in Eq. (10-45). Equation
(10-57) indicates that the wave impedance of propagating TE modes in a
waveguide with a lossless dielectric is purely resistive and is always larger than
the intrinsic impedance of the dielectric medium. The variation of Z,; versus I
for f > f. is also sketched in Fig. 10-2.

(10-57)

2
b) (£> < 1, or f < f.. In this case, y is real and we have an evanescent or non-

Je
[ AN _

propagating mode:
Substitution of Eq. (10-58) in Eq. (10-54) gives the wave impedance of TE modes
for f < f.:

s £ <t (10-59)

AN [P
W ST

which is purely reactive, indicating again that there is no power flow for evane-
scent waves at [ < f.

mmmmmm EXAMPLE 10-1 (a) Determine the wave impedance and guide wavelength at a fre-
quency equal to twice the cutoff frequency in a waveguide for TM and TE modes.
(b) Repeat part (a) for a frequency equal to one-half of the cutoff frequency. (c) What
are the wave impedance and guide wavelength for the TEM mode?

Solution

a) At f = 2f, which is above the cutoff frequency, we have propagating modes. The
appropriate formulas are Egs. (10-45), (10-57), and (10-39).

For f =2f, (f./f)? = 3 V1 — (£/f)? = \/3/2 = 0.866. Thus,

Zow=0866n < 1, Ay = 1.1554 > A,
Zog=1155= 0 dee=11580% i
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TABLE 10-1

Wave Impedances and Guide Wavelengths for f > f.
Mode Wave Impedance, Z Guide Wavelength, 2,
TEM P s

f 2
™ n /1— (i) L
f V1 = (f/f)?
A

TE

e N
b

VI =iy V1I=(f/f)

b)

where # is the intrinsic impedance of the guide medium. These results are sum-
marized in Table 10-1.

At f = f/2 < f,, the waveguide modes are evanescent, and guide wavelength has
no significance. We now have

h 2
wp

Zyg = j ———— = j3.63f.u/h.
=) ! it/

We note that both Zy, and Z;¢ become imaginary (reactive) for evanescent
modes at f < f; their values depend on the eigenvalue h, which is a characteristic
of the particular TM or TE mode.

The TEM mode does not exhibit a cutoff property and h = 0. The wave impedance
and guide wavelength are independent of frequency. From Egs. (10-20) and
(10-18) we have

Zigm =1
and
A‘TEM = l‘{. —

For propagating modes, y = jf and the variation of § versus frequency determines

the characteristics of a wave along a guide. It is therefore useful to plot and examine
an w-f diagram." Figure 10-3 is such a diagram in which the dashed line through
the origin represents the w—f relationship for TEM mode. The constant slope of this

straight line is w/f = u = 1//ue, which is the same as the velocity of light in an un-
bounded dielectric medium with constitutive parameters u and e.

" Also referred to as a Brillouin diagram.
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FIGURE 10-3

g w—f diagram for waveguide.

The solid curve above the dashed line depicts a typical w-f relation for either
a TM or a TE propagating mode, given by Eq. (10-38). We can write

NN . S (10-60)

VT — (@Jw)

The w-p curve intersects the w-axis (f = 0) at @ = w,. The slope of the line joining
the origin and any point, such as P, on the curve is equal to the phase velocity, u,,
for a particular mode having a cutoff frequency f. and operating at a particular
frequency. The local slope of the w—f curve at P is the group velocity, u,. We note
that, for propagating TM and TE waves in a waveguide, u, > u, u, < u, and Eq.
(10—44) holds. As the operating frequency increases much above the cutoff frequency,
both u, and u, approach u asymptotically. The exact value of w, depends on the
eigenvalue hin Eq. (10-35)—that is, on the particular TM or TE mode in a waveguide
of a given cross section. Methods for determining h will be discussed when we examine
different types of waveguides. We recall that the w—f graph for wave propagation
in an ionized medium (Fig. 8—7) was quite similar to the w—f diagram for a waveguide
shown in Fig. 10-3.

EXAMPLE 10-2 Obtain a graph showing the relation between the attenuation con-
stant « and the operating frequency f for evanescent modes in a waveguide.

Solution For evanescent TM or TE modes, f < f. and Eq. (10-46) or (10-58)
applies. We have

2
(7:- a) +fi=s2 (10-61)

Hence the graph of (f,a/h) plotted versus f is a circle centered at the origin and
having a radius f,. This is shown in Fig. 10-4. The value of « for any f < f, can be
found from this quarter of a circle. -
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Sea/h
1
a=h
fe
FIGURE 104
>/ Relation between attenuation constant and operating frequency for
0 T g evanescent modes (Example 10-2).

10-3 Parallel-Plate Waveguide

In Section 9-2 we discussed the characteristics of TEM waves propagating along a
parallel-plate transmission line. It was then pointed out, and again emphasized in
Subsection 10-2.1, that the field behavior for TEM modes bears a very close re-
semblance to that for uniform plane waves in an unbounded dielectric medium.
However, TEM modes are not the only type of waves that can propagate along
perfectly conducting parallel-plates separated by a dielectric. A parallel-plate wave-
guide can also support TM and TE waves. The characteristics of these waves are
examined separately in following subsections.

10-3.1 TM WAVES BETWEEN PARALLEL PLATES

Consider the parallel-plate waveguide of two perfectly conducting plates separated
by a dielectric medium with constitutive parameters € and y, as shown in Fig. 10-5.
The plates are assumed to be infinite in extent in the x-direction. This is tantamount
to assuming that the fields do not vary in the x-direction and that edge effects are
negligible. Let us suppose that TM waves (H, = 0) propagate in the + z-direction.
For harmonic time dependence it is expedient to work with equations relating field

FIGURE 10-5
An infinite parallel-plate waveguide.
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