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 Liquid Crystals

: substances that exhibit long-range order in one or two dimensions, but not all three.

: lie in-between of amorphous and crystalline in properties 

: direct consequence of molecule asymmetry. It arises because two molecules 

cannot occupy the same space at the same space time and is largely entropically 

derived.

: For new classes of high-modulus fibers, high-temperature plastics and a host of 

new electronic and data storage materials

 Rod-Shape Chemical Structures

7.1. Definition of Liquid Crystal
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Poly(p-phenylene terephthalamide) : Kevlar® by du Pont
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Terephthalic acid Etylene glycol p-hydroxybenzoic acid
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Nematic : 1D organization of molecules

: with their chains lying parallel to each other at equilibrium

Smectic : ordered in 2D (exist a large number of smetic mesophases 

Cholesteric : 2D twisted nematic mesophase

Discotic : like stacks of dishes or coins

Fig.7.1 Schematic representation of the 

different types of mesophases: Smetic 

with ordered (a) and unordered (a’); (b) 

nematic; (c) cholesteric; and (d) discotic

7.2. Liquid Crystalline mesophases 

7.2.1. Mesophase topologies

 Some LC chemical structures

 Fig 7.2
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7.2. Liquid Crystalline mesophases 

Fig. 7.2 Asymmetric organic molecules in the form of rods or plates may form liquid crystal 

structures
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7.2. Liquid Crystalline mesophases 

7.2.2. Phase diagrams

Fig. 7.3 Phase diagrams illustrate the 

expected behavior of a material as a 

function of temperature and composition. 

Here, a mixture of polymer

and the monomer

weight fraction

- filled symbols : DSC measurement

- open symbols : polarizing microscope

 Note that the monomer by itself 

crystallizes.

 The nematic mixure clears in the 

temperature range of 360 to 370 K
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※ LC - forming polymer may exhibit multiple mesophases at different Ts or Ps.

As T↑, the polymer goes through multiple first order transitions.

Fig. 7.4 Liquid crystal-forming 

polymers may undergo many 

first-order transitions. Here, as 

the temperature is raised, the 

polymer first melts to a smectic 

structure, then to a nematic 

structure, and then to an 

isotropic melt.

7.2. Liquid Crystalline mesophases 

7.2.3. First-order transitions
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7.2. Liquid Crystalline mesophases 

Fig. 7.5 DSC heating trace of an acrylic, liquid 

crystal-forming polymer. 

Note two first-order transitions.

 The nature of the first-order transitions is best illustrated by observing the 

behavior of these materials in a differential scanning calorimeter (DSC).
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 The presence of multiple endotherms 

provides direct evidence of the 

multiplicity of first-order transitions in this 

polymer.

 Tm=59℃ Smetic phase (via microscopy)

 Near 100℃ transform to a cholesteric 

phase (however, the isotropic melt phase 

appears at same temperature) 

 heating the polymer at a slower rate 

 separate the transitions

 Not all polymers go through LC mesophases. 

 Polymers that form random coils melt directly to the isotropic liquid state.  

 Some portion of the chain or side chain must be rod- or disk-shaped to form a LC 

mesophase.
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┌ Lyotropic - in concentrated (～30%) solution

│ Thermotropic - in melts

└ Mesogenic side group compositions - random coil backbone rod 

shaped side group

(subclass of thermotropic LCs)

7.3. Classification of Liquid Crystal

7.3.1. Lyotropic Liquid Crystalline Chemical Structures

 Form nematic mesophases

 Aromatic polyamides with aromatic ring structures, as shown in Table 7.1

 Heterocyclic polymers yield materials with outstanding high-temperature 

performance (see Table 7.2).have ladder or semi-ladder chemical structures

 Some natural polymers  include cellulose derivatives
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7.3. Classification of Liquid Crystal

Table 7.1 Important polyamides yielding

liquid crystalline mesophase

aThe basis for the fiber “Kevlar® , widely used for bullet-proof jackets, 

parachutes, etc.
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Table 7.2 Lyotropic solutions of polyheterocyclic compounds

Compound Structure Lyotropic Solvent Reference

Poly(1,4-phenylene-2,6-benzobisimidazole) Methanesulfonic acid (a)

Poly(1,4-phenylene-2,6-benzobisoxazole)

(PBO)

Methanesulfonic acid

Chlorosulfonic acid

100% sulfonic acid

(b,c)

(d)

Poly(1,4-phenylene-2,6-benzobisthiazole)

(PBT)

5-10% in polyphosphoric acid

Methanesulfonic acid

(e)

(c,d,f)

Poly[2,6-(1,4-phenylene)-4-phenylquinoline]
1.0-1.5% in m-cresol-di-m-cresyl 

phosphate
(g)

Poly[1,1’-(4,4’-biphenylene)-6,6’-bis(4-

phenylquinoline)]

>9% in m-cresol-di-m-cresyl 

phosphate
(g)

Poly[2,5(6)-benzimidazole] (AB-PBI) Methanesulfonic acid (h)

7.3. Classification of Liquid Crystal
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7.3. Classification of Liquid Crystal

7.3.2. Thermotropic Liquid Crystalline

 Aromatic copolyesters

 Some homopolymer aromatic polyesters  too high a melting temperature to form 

thermotropic mesophases without decomposition

 copolymerization reduces melting temperatures

 Several techniques to reduce the melting temperature

① Copolymerization of several mesogenic monomers, which produces random 

copolymers with depressed melting temperature.

② Use of monomers with bulky side group, which prevents close packing in the LC 

mesophase, sometimes referred to as "frustrated chain packing".

③ Use of best comonomers to interrupt the order in the system

④ Incorporation of flexible spacers, to decrease rigidity.

( └→Tg↓, solubility↑ )

This permits the development of bends or elbows in the chain.

 Both Lyo- and Thermo- LCs are highly crystalline in actual usage, going from the LC 

to the crystalline state by either removing the solvent or cooling the system

 However, the side-chain mesogenic materials usually remain in the  LC state for

their intended use.
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7.3. Classification of Liquid Crystal

Table 7.3 Melting point versus structure for selected thermotropic LC polyesters
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7.3. Classification of Liquid Crystal

Fig. 7.6 One way of classifying 

thermotropic LC polymers is to examine 

whether the mesogenic unit is in the 

main chain or in the side chain

 Flexible spacers placed in the main chain achieve both improved solubility and the 

lowering of transition temperatures.

 The flexible spacer may be hydrocarbon based, as in Table 7.3
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7.3. Classification of Liquid Crystal

7.3.3. Side-chain Liquid Crystalline 

Fig. 7.7 A schematic showing how 

mesogenic LC side-chain polymers 

can be organized into different 

mesophases.

 Polymers here have rod- or disk-shaped side groups placed on ordinary random 

coil polymers, frequently acrylics or siloxanes (see Table 7.4)

 The first attempts to form side-chain LC structures involved attachment of short 

rod-shaped moieties directly to the main chain (Fig 7.7)  disappointing 

 the reasons why

① Tg of polymers is always at much higher temperatures that for the 

corresponding polymers without mesogenic side chains

② During the polymerization process, the LC packing of the monomers was 

destroyed by steric requirements.
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7.3. Classification of Liquid Crystal

Table 7.4 Examples of smectic polymers by lengthening the segments A and B
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7.3. Classification of Liquid Crystal

Fig. 7.8 Oriented smectic LC polymers yield very distinctive X-ray patterns. 

Here, the smectic mesophase (SA) is shown for polymers having the structures.

 The structure of these LC phases was determined by X-ray analysis. (Fig 7.8)

CH2 C(CH3)

OC O (CH2)11 O CH N CN

CH2 C(CH3)

OC O (CH2)10 C CH N CNO

O
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Fig. 7.9 LC side chains can be packed in several arrangements, even considering only the 

smectic A mesophase: (a) single-layer packing, (b) two-layer packing, (c) packing with 

overlapping alkyl “tails,” and (d) packing with partial overlapping of the mesogenic side chains.

1, Main chain; 2, spacer; 3, mesogenic group; d, repeat distance, as revealed by X rays.

7.3. Classification of Liquid Crystal

 The packing arrangement of these materials is illustrated in Fig 7.9

 The side chains can be arranged in either single-layer or double-layer packing 

arrangements, Fig 7.9a and b, respectively. 

Packing with partial overlap is also possible; Fig 7.9c and d

 The selection of the probable packing mode was based on the d spacing shown in 

Fig 7.9, which corresponds to the thickness of the smetic layer.

 In contrast to the backbone types of LC, the side-chain types exhibit neither high 

modulus nor high strength. However, provides highly interesting for structual and 

optical properties (especially as transformed by electric and magnetic fields)
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 LCs were first noted for organic molecules about 100 years ago; a peculiar melting 

behavior of a number of cholesterol esters by Reinitzer.  The crystals of the 

substances melted sharply to form an opaque melt instead of the usual clear melt.

 Lehmann reported the turbid states between the truly crystalline and the truly 

isotropic fluid state  introduced the term “Flussige Kristalle”, or liquid crystals

 The first polymeric LC : poly(γ-benzly L-glutamate) in 1950

7.4. Thermodynamics and Phase Diagrams

7.4.1. Historical Aspects

Flory. critical volume concentration

where : no. of isodiametric segments

→ axial ratio of the molecule

: a transition from complete disorder to partial order was predicted to occur

abruptly and discontinuously.
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(-)       value does not affect the biphasic gap.

(+)      value, critical volume exists at =0.055

=0.070 : triple point

1

1

1

7.4. Thermodynamics and Phase Diagrams

7.4.2. Importance of χ1 parameter

 The statistical thermodynamic theory described above pertains to rods devoid of 

interactions other than the short-range repulsions, which preclude intrusion of one 

rod on the space occupied by another.

 theoretical deductions stem solely from the geometrical aspects of the molecules

 Introduction of the polymer-solvent interaction parameter χ1, for lyotropic systems

 Fig 7.10

Fig. 7.10 Phase diagram for rods of axial ratio x=100. 

The positions of the coexisting phases are 

determined by the value of the parameter χ. The 

minimum of the shallow concave portion of the 

diagram is a critical point marking the emergence of 

two anisotropic phases, in addition to the isotropic 

phase appearing on the left of the figure.

dilute isotropic 

dilute anisotropic

concentrated anisotropic
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① Optical pattern or texture observations with a polarizing microscope. 

┌ Isotropic liquid - no texture

└ liquid crystals - have the texture

② Nematic and smectic phases can be distinguished by DSC on the basis of 

the magnitude of the enthalpy changes accompanying the transition to the 

isotropic phase. → measure △Htrans

③ Miscibility with known liquid crystals to form isomorphous mesophases.

 See Fig 7.3

④ Possibilities of inducing significant molecular orientation by either supporting

surface treatment or external electrical or magnetic fields.

⑤ Small-angle X-ray to study molecular long-range order

⑥ Small-angle light scattering between crossed nicols 

 different patterns for different mesophases.

※ Mesophase Identification in Thermotropic polymers

 A major question in the LC field  the identification of the various mesophases

 Several methods may be used
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S=± ½ or ±1  Nematic (indicated by a mixture of two and four point disclinations)

S=±1       Smectic (exhibits only four point diaclinations)

※ Mesophase Identification in Thermotropic polymers

 The most widely used method : optical microscopy (between crossed polarizers) 

 Identify the appearance of mesophases and transitions between the various 

mesophases and isotropic materials

 Many LC polymers exhibit Schlieren textures : display dark brushes  See Fig 7.11

 correspond to extinction positions of the mesophase

 At certain points, two or more dark brushes meet : disclinations (like dislocations in c

rystalline solid, where domains of differing orientation melt)

 The disclination strength is calculated from the number of dark brushes meeting at 

one point:

4

number of brushes meeting
S 

S : positive when the brushes turn in the same direction as the rotated polarizers

: negative when they turn in the opposite direction
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Fig.7.11 Optical microscopy reveals a Schlieren texture for a copolyester formed by the 

transesterification of poly(ethylene-1,2-diphenoxyethane-p,p'-dicarboxylate) with p-

acetoxybenzoic acid. Recognizable singularities S=±1/2 are marked with 

arrows. Crossed polarizers, 260℃, ×200 

Mesophase Identification in Thermotropic polymers
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The viscosity of lyotropic solutions in shear 

flow is lower than that of random coil solutions 

of the same molecular weight and 

concentration.

⇒ due to the lack of molecular entanglements

in the nematic phase. 

7.5. Fiber Formation

Fig. 7.12 The viscosity of rod-shaped polymers usually 

goes through a maximum as the chains organize from 

the isotropic state to a mesostate. Data for poly(p-

phenylene benzobisoxazole) in concentrated sulfuric 

acid.

 Viscosity of Lyotropic Solutions

 Molecular Orientation

through spinning, shear induced orientation 

achieved on removing the solvent, polymer 

crystallizes because of the lack of chain 

foldings and other perfections, the fibers 

have higher moduli and higher strength.
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7.6. Comparison of Major Polymer Types

Table 7.5 Comparison of major polymer types

Property Rigid Rod Extended Chain Random Coils

LC v2* critical concentration, % 4-5 14-15 None

Dilute solution

conformation

Tg

Tf

Rod

Noa

Nob

Worm

Noa

Nob

Coil

Yes

Yes

Persistence length, Å >500 90-130 10

Mark-Houwink a value 1.8 1.0 0.5-0.8

Catenation angle, degrees 180 150-162 109-120

Max [η], dl/g 48-60 15-25 0.1-3

aMay be difficult to observe if highly crystalline.
bMay decompose before melting.

 Molecular conformation
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7.6. Comparison of Major Polymer Types

Fig. 7.13 Rigid-chain and semiflexible-chain ordered assemblies as the concentration of the 

polymer is increased.
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 Regardless of molecular size or shape, a liquid crystal must satisfy three basic 

requirements.

1. There must be a first-order transition between the true crystalline state at the 

lower T found leading to the liquid crystalline state, and another first-order 

transition leading to the isotropic liquid state (or another liquid crystal state) at 

the upper T found of the liquid crystalline state.

2. A liquid crystal must exhibit one-or-two dimensional order only : true crystals 

have 3D order, and the isotropic liquid is completely disordered.

3. A liquid crystalline material must display some degree of fluidity 

: although for polymers the viscosity may be high.

※ Basic Requirements for Liquid Crystal Formation

Experiment Amorphous Crystalline Liquid Crystalline

X-ray Amorphous halo 3-D order 1- or 2-D order

Polarizing microscope No texture Spherulites Schlieren texture

DSC, dilatometric Only Tg Tg and Tf Tg and two or more 

first-order transitions
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Keywords in Chapter 8

- Hydrophilic-lipophilic balance (HLB)

- Critical packing parameter

- χN vs f phase diagram for block copolymers

- Phase diagram for ternary amphiphilic block 

copolymer – water – oil system

- Applications of copolymers


