# 재료상변태

# **Phase Transformation of Materials**

2008.09.02.

### 박 은 수

서울대학교 재료공학부

### **Materials Science and Engineering**

### 합금설계 + 공정(工程)



**FIGURE 1-8** The three-part relationship between structure, properties, and processing method. When aluminum is rolled into foil, the rolling process changes the metal's structure and increases its strength.

### One of the Most Popular Structural Materials ; Iron-Carbon Alloy (or Steel)





### Steel frame of building

**Steel house** 

### **Application of Iron-Carbon Alloy**

K1 – main battle tank of Korea army



### **Need of the strongest materials**

# Dominant Material for Airplanes ; Aluminum Alloy

B737-800 of Korean Air



### Need of light, strong and tough material

### A Example of Grain Boundary Engineering ; Turbine blade in Aircraft Engine



### **Better Material Properties**



# Microstructure Control of Materials

### What is Phase?

A phase is a chemically and structurally homogeneous portion of the microstructure.



### Phase Diagram of Temperature – Composition ; More useful in materials science & engineering



# Phase Transformation of Iron and Atomic Migration



**Body-Centered Cubic** 

### What is Microstructure in Materials Science ?

**Transmission Electron** 

### Materials ; Assemblage of Atoms







Lamborghini - Countach



Atomic Force Microscope



# Perfect Crystal is good in many aspects, But ...

□ Imperfection in Metallic Materials ;

Point defect : Vacancies, Impurity atoms Line defect : Dislocations Plane defect : Grain Boundaries, Free Surfaces Bulk defect : Voids, Cracks

Second Phase Particles in Matrix

Mechanical Properties ; Magnetic properties Electrical properties Etc.

# **Perfect Crystals without Defect**



High strength, unique magnetic/electrical properties

### **Dislocations**



# **Grain Boundaries**



### **Voiding by Electro-migration in Interconnects**



McKnelly, Sanchez, Morris, UC Berkeley, 1989

# Using of Materials with Improper Microstructure





# Oil tanker fractured in a brittle manner

#### 성수대교 붕괴 (1994.10.21)

# Phase Diagram of Iron–Carbon Alloy



### **Equilibrium Phases of Iron-Carbon Alloy**



# **Mechanism of Precipitation**



# Effect of Second Phase Particle on Mechanical Property



### Control of Microstructures by Precipitation Transformation in Aluminum Alloy

Boeing 767 by AA7150 T651 alloy



# Control of Microstructures ; Cold Work

김홍도 "대장간"





조선시대

### 현대의 단조기

# Hardening Mechanism by Cold Working



# Changes of Strength and Ductility by Cold Working



### Changes of Microstructure & Mechanical Properties during Annealing



## **Production and Application of Electrical Steel**

Hot rolling - cold rolling – 1<sup>st</sup> annealing – 2<sup>nd</sup> annealing





#### Stacked transformer core

Coils

Transformer Motor Etc.

Soft magnetization property



### Abnormal Grain Growth In Fe-3%Si Steel Sheet produced by POSCO

Abnormally grown grains with Goss texture

**Control of grain growth** 

Control of magnetic property



## **Production and Application of Electrical Steel**

Hot rolling - cold rolling – 1<sup>st</sup> annealing – 2<sup>nd</sup> annealing





#### Stacked transformer core

Coils

Transformer Motor Etc.

Soft magnetization property



# Understanding and Controlling Phase Transformation of Materials

# **Phase Transformation**

- Thermodynamics
- Kinetics



# **Phase Transformation**

- Solidification: Liquid  $\implies$  Solid
- Phase transformation in Solids

**Diffusion-controlled phase transformation ;** Generally long-distance atomic migration

- Precipitation transformation
- Eutectoid transformation ( S S1 + S2)
  etc.

### **Diffusionless transformation ;**

Short-distance atomic migration

- Martensitic transformation

### Time-Dependency of Diffusion-Controlled Phase Transformation



### **Non-Equilibrium Phases**

### Need of Controlling not only Temperature & Composition but Process conditions (Cooling Rate)

### Transformation Kinetics and Isothermal Transformation Diagram



### Isothermal Transformation Diagram of a Eutectoid Iron-Carbon Alloy



### **Control of Phases by Heat Treatment**



### Control of Mechanical Properties by Proper Heat Treatment in Iron-Carbon Alloy



Martensite

Brittle

Tip of needle shape grain

Nucleation site of fracture



Proper heat treatment ( tempering )



#### Tempered martensite



Very small & spherical shape grain

Good strength, ductility, toughness

# **Diffusionless Transformation**

Martensitic transformation in iron-carbon alloy





### Difference of Deformation Behavior between Conventional Metals and Shape Memory Alloys



### **Super-elasticity of Shape Memory Alloy**



모상 (1) 📫 변형 (2) 📫 하중제거 (3) 📫 모상 (1)

### **Principle of Shape Memory Alloys**



#### **Ni-Ti alloys**



Y. Liu, Z. Xie et al, Scripta Materialia, 1999

### Change of Atomic Array during Martensitic Transformation in Ni-Ti Alloy



### **Medical Applications of Shape Memory Alloys**



heating



### **Bond-bonding staple**



#### After 3 weeks



### Wire for tooth-correction

# Shape Memory Alloy's applications can be used in many ways depends on the use of YOUR IDEAS.

Magic flower



#### Magic spring (climb koala)



**YOU Tube** 

# **Contents in Phase Transformation**

- Thermodynamics (Ch1)
- Kinetics- Diffusion (Ch2)
- Microstructure: Interface, Grain structure (Ch3)
- Solidification: Liquid → Solid (Ch4)
- Transformation: Solid → Solid (Diffusional) (Ch5)
- Transformation: Solid → Solid (Diffusionless) (Ch6)

### **Materials Science and Engineering**



**FIGURE 1-8** The three-part relationship between structure, properties, and processing method. When aluminum is rolled into foil, the rolling process changes the metal's structure and increases its strength.

# 2008년 9월

| 일  | 원  | 화  | 수  | 목  | 旧  | 또  |
|----|----|----|----|----|----|----|
|    | 1  | 2  | 3  | 4  | 5  | 6  |
| 7  | 8  | 9  | 10 | 11 | 12 | 13 |
| 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 28 | 29 | 30 |    |    |    |    |