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Contents for previous class

• Ternary Equilibrium: Ternary Phase Diagram

< Chapter 2 >

• Diffusion

• Interstitial Diffusion – Fick’s First Law

• Effect of Temperature on Diffusivity
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Diffusion



Diffusion

Diffusion : Mechanism by which matter 
transported through matter 

What is the driving force for diffusion?
⇒ a concentration gradient (x)
⇒ a chemical potential (o)

But this chapter will explain with concentration
gradients for a convenience.



Substitutional diffusion Interstitial diffusion

Diffusion: THE PHENOMENON



Assume that there is no lattice distortion and 
also that there are always six vacant sites 
around the diffusion atom.

JB : Flux of B atom
ΓB : Average jump rate of B atoms
n1 : # of atoms per unit area of plane 1
n2 : # of atoms per unit area of plane 2
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Random jump of solute B atoms in a dilute 
solid solution of a simple cubic lattice

Interstitial diffusion



α α= =B BC n C n1 2(1) , (2)

(atoms m-2 s-1)

( ) ( )α− = −B Bn n C C1 2 (1) (2)

DB: Intrinsic diffusivity or 
Diffusion coefficient of B
⇒ depends on 
microstructure of materials

Fick’s First Law of Diffusion
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α: Jump distance

Magnitude of D in various media

Gas  :  D ≈ 10-1 cm2/s
Liquid :  D ≈ 10-4 ~ 10-5 cm2/s
Solid : Materials near melting temp.  D ≈ 10-8 cm2/s
Elemental semiconductor (Si, Ge)  D ≈ 10-12 cm2/s

Concentration varies with position.



EFFECT OF TEMPERATURE  on Diffusivity

Thermal Activation

Temperature Γ D, Diffusivity
(Interstitial atom jumps times per second)
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Ζ : nearest neighbor sites
ν : vibration frequency

ΔGm : activation energy for moving
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Temperature Dependence of Diffusion
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Therefore, from the slope
of the D-curve in an log D vs
1/T coordinate, the activation
energy may be found.

How to determine QID
experimentally?



Contents for today’s class

• Steady-state diffustion – Fick’s First Law

• Nonsteady-state diffusion – Fick’s Second Law

• Solutions to the diffusion Equations 



Steady-state diffusion

The simplest type of diffusion to deal with is when the concentration 
at every point does not change with time.



Steady-state diffusion

The simplest type of diffusion to deal with is when the concentration 
at every point does not change with time.



Nonsteady-state diffusion
In most practical situations steady-state conditions are not established,
i.e. concentration varies with both distance and time, and Fick’s 1st law
can no longer be used.

How do we know the variation of CB with time?→ Fick’s 2nd law

The number of interstitial B atoms that 
diffuse into the slice across plane (1)
in a small time interval  dt : 

→ J1A dt Likewise : J2A dt

Sine J2 < J1, the concentration of B within the slice will have increased by

( ) δ
δ

δ
−

= 1 2
B

J J A t
C

A x

Due to mass conservation

( )1 2 ?J J A tδ− = BC A xδ δ=



Nonsteady-state diffusion
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Fick’s Second Law
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If variation of D with concentration can be ignored,
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Fick’s Second Law

Concentration varies 
with time and position.
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Diffusion



Solutions to the diffusion equations

Ex1. Homogenization
of sinusoidal varying composition
in the elimination of segregation in casting

τ : relaxation time

l : half wavelength
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: the mean composition  C　

0  : the amplitude of the initial concentration profileβ

Initial or Boundary Cond.?
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Solutions to the diffusion equations

Ex2. Carburization of Steel
The aim of carburization is to increase the carbon concentration 
in the surface layers of a steel product in order to achiever a 
harder wear-resistant surface. 

1. Holding the steel in CH4 and/or Co 
at an austenitic temperature.

2. By controlling gases the concentration 
of C at the surface of the steel can be
maintained at a suitable constant value.

3. At te same time carbon continually 
diffuses from the surface into the steel.



Carburizing of steel
Boundary conditions

The error function solution:
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Depth of Carburization?

• Since erf(0.5)≈0.5 the depth at which the carbon concentration 
is midway between Cs and C0 is given

that is
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Carburizing of steel
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Thus the thickness of the carburized layer is              .
Note also that the depth of any isoconcentration line is 
directly proportion to         , i.e. to obtain a twofold  increase 
in penetration requires a fourfold increase in time.

Decarburization of Steel?



Error function

In mathematics, the error function (also called the Gauss error
function) is a non-elementary function which occurs in probability,
statistics and partial differential equations.
It is defined as:

By expanding the right-hand side in a Taylor series and integrating, 
one can express it in the form

for every real number x.          (From Wikipedia, the free encyclopedia)
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Joining of two semi-infinite specimens of compositions C1 and C2 (C1 > C2 )

Ex3. Diffusion Couple

Draw C vs. x with time t = 0 and t > 0. Boundary conditions?

Solutions to the diffusion equations



The section is completed with 4 example solutions to Fick's 2nd law:
carburisation, decarburisation, diffusion across a couple and homogenisation.
The solutions given are as follows:

Process Solution

Carburisation
CS = Surface concentration
C0 = Initial bulk concentration

Decarburisation
C0 = Initial bulk concentration

Diffusion Couple
C1 = Concentration of steel 1
C2 = Concentration of steel 2

Homogenisation

Cmean = Mean concentration 
b0 = Initial concentration amplitude 
l = half-wavelength of cells 
t = relaxation time
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