재료상변태

Phase Transformation of Materials

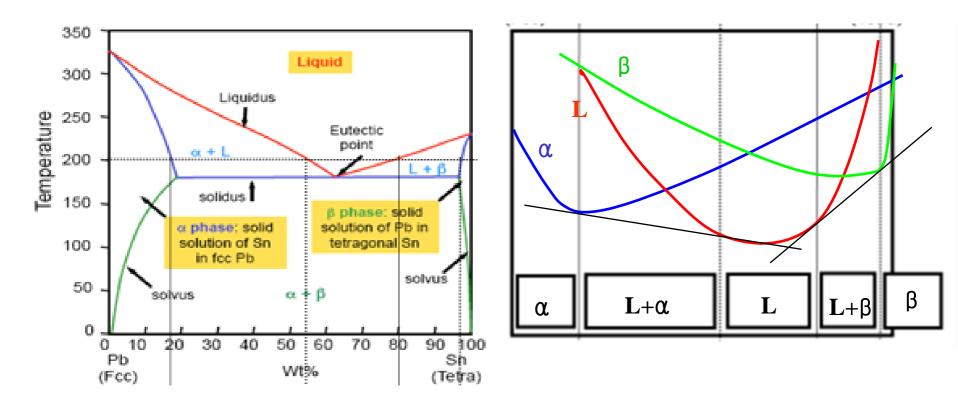
2008.09.30.

서울대학교 재료공학부

Contents for previous class

- Ternary Equilibrium: Ternary Phase Diagram
- < Chapter 2 >
- Diffusion
- Interstitial Diffusion Fick's First Law
- Effect of Temperature on Diffusivity

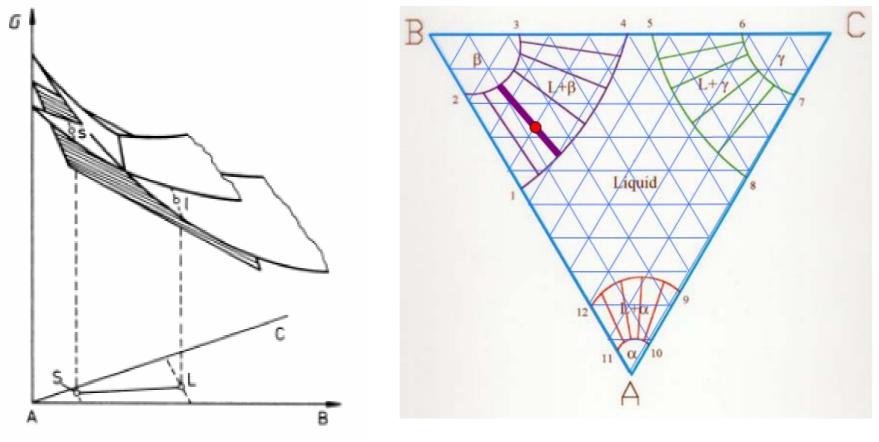
Tie line: binary system



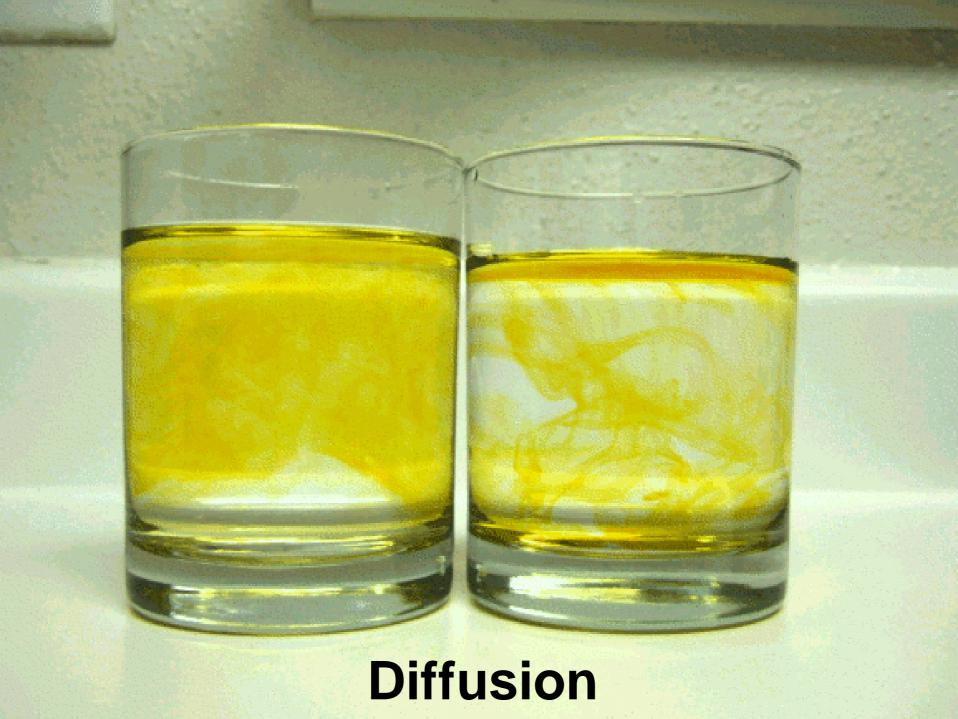
* Simple Eutectic Systems

$$\Delta H_{mix}^{L} = 0 \quad \Delta H_{mix}^{S} >> 0$$

Tie line: ternary system



(ь)



Diffusion

Diffusion : Mechanism by which matter transported through matter

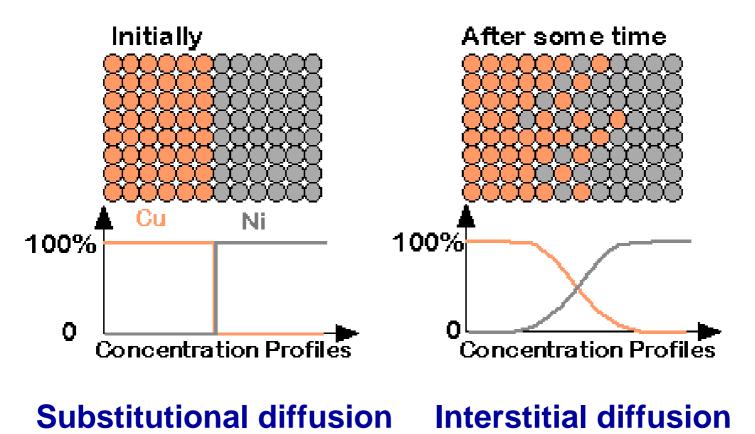
What is the driving force for diffusion?

- \Rightarrow a concentration gradient (x)
- ⇒ a chemical potential (o)

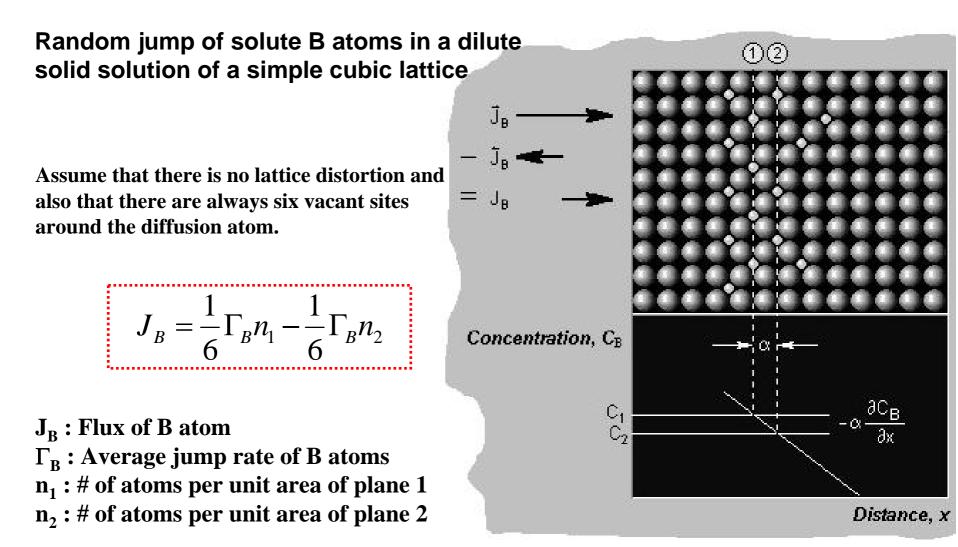
But this chapter will explain with concentration gradients for a convenience.

Diffusion: THE PHENOMENON

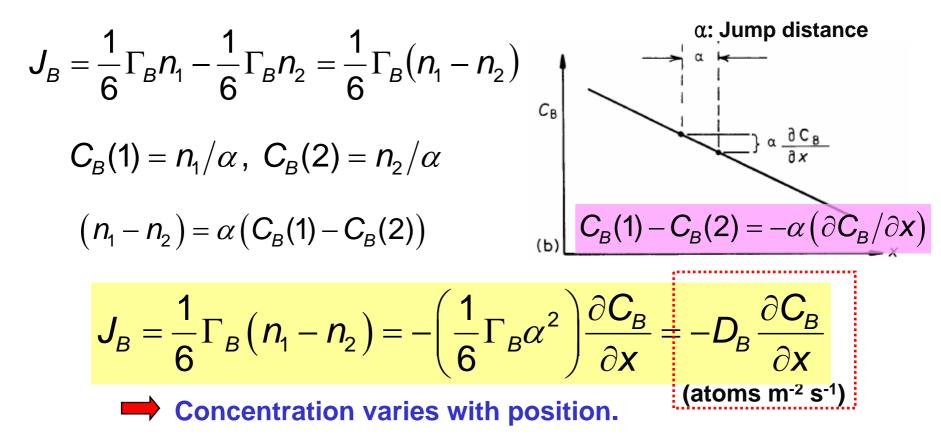
• Interdiffusion: in a solid with more than one type of element (an alloy), atoms tend to migrate from regions of large concentration.



Interstitial diffusion



Fick's First Law of Diffusion



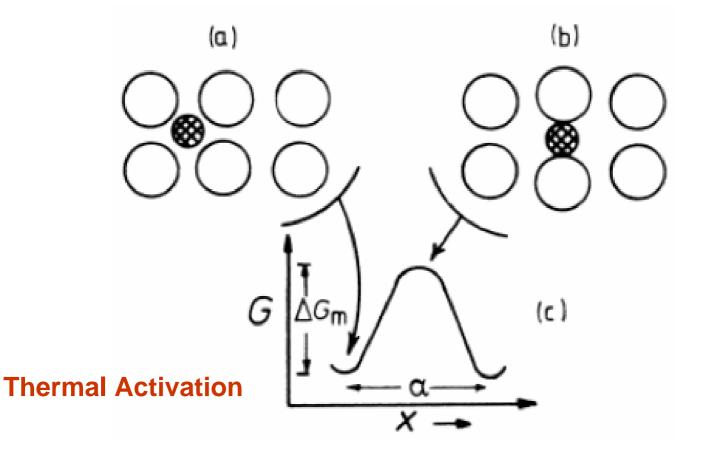
D_B: Intrinsic diffusivity or Diffusion coefficient of B ⇒ depends on microstructure of materials Magnitude of D in various media

Gas : $D \approx 10^{-1} \text{ cm}^2/\text{s}$ Liquid : $D \approx 10^{-4} \sim 10^{-5} \text{ cm}^2/\text{s}$ Solid : Materials near melting temp. $D \approx 10^{-8} \text{ cm}^2/\text{s}$ Elemental semiconductor (Si, Ge) $D \approx 10^{-12} \text{ cm}^2/\text{s}$

EFFECT OF TEMPERATURE on Diffusivity

Temperature \implies Γ \implies **D**, **Diffusivity**

(Interstitial atom jumps times per second)



Thermally activated process

jump frequency Γ_B ?

$$\Gamma_{B} = Z \nu \exp(-\Delta G_{m} / RT)$$

Z : nearest neighbor sites

v : vibration frequency

 $\Delta \mathbf{G}_{\mathbf{m}}$: activation energy for moving

$$\Delta G_{m} = \Delta H_{m} - T \Delta S_{m}, D_{B} = \frac{1}{6} \Gamma_{B} \alpha^{2} \}$$

$$D_{B} = \left[\frac{1}{6} \alpha^{2} Z v \exp(\Delta S_{m} / R)\right] \exp(-\Delta H_{m} / RT)$$

$$\Delta H_{m} \equiv Q_{ID}$$

$$D_{B} = D_{B0} \exp\frac{-Q_{ID}}{RT} \text{ (Arrhenius-type equation)}$$

Temperature Dependence of Diffusion

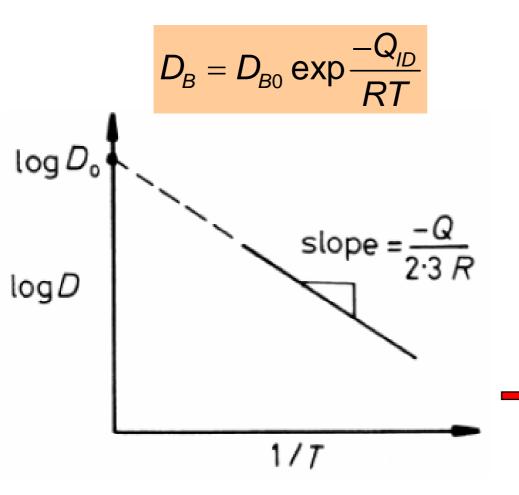


Fig. 2.7 The slope of log D v. 1/T gives the activation energy for diffusion Q.

How to determine Q_{ID} experimentally?

$$\log D = \log D_0 - \frac{Q}{2.3R} \left(\frac{1}{T}\right)$$

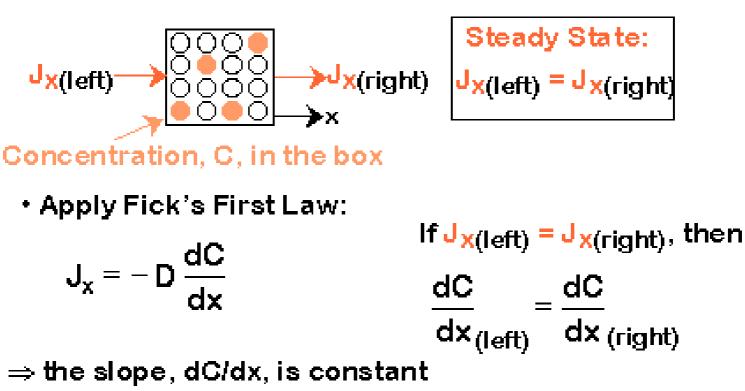
Therefore, from the slope of the D-curve in an log D vs 1/T coordinate, the activation energy may be found.

Contents for today's class

- Steady-state diffustion Fick's First Law
- Nonsteady-state diffusion Fick's Second Law
- Solutions to the diffusion Equations

Steady-state diffusion

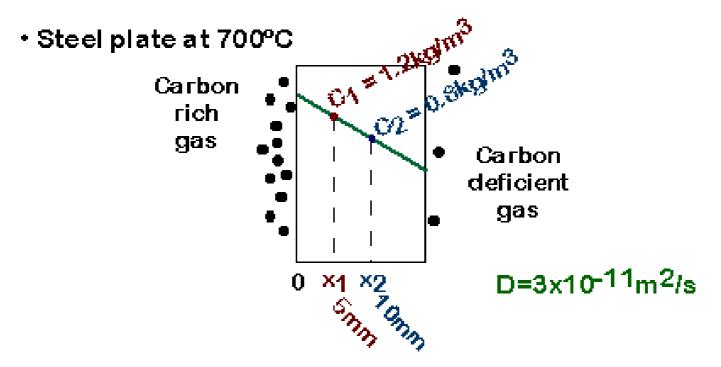
The simplest type of diffusion to deal with is when the concentration at every point does not change with time.



(does not vary with position)!

Steady-state diffusion

The simplest type of diffusion to deal with is when the concentration at every point does not change with time.



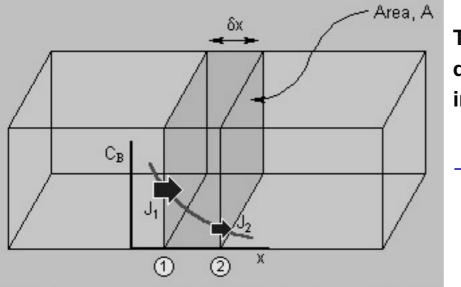
Q: How much carbon is transferring from the rich to deficient side?

$$J = -D\frac{C_2 - C_1}{x_2 - x_1} = 2.4 \times 10^{-9} \frac{\text{kg}}{\text{m}^2 \text{s}}$$

Nonsteady-state diffusion

In most practical situations steady-state conditions are not established, i.e. concentration varies with both distance and time, and Fick's 1st law can no longer be used.

How do we know the variation of C_B with time? \rightarrow Fick's 2nd law



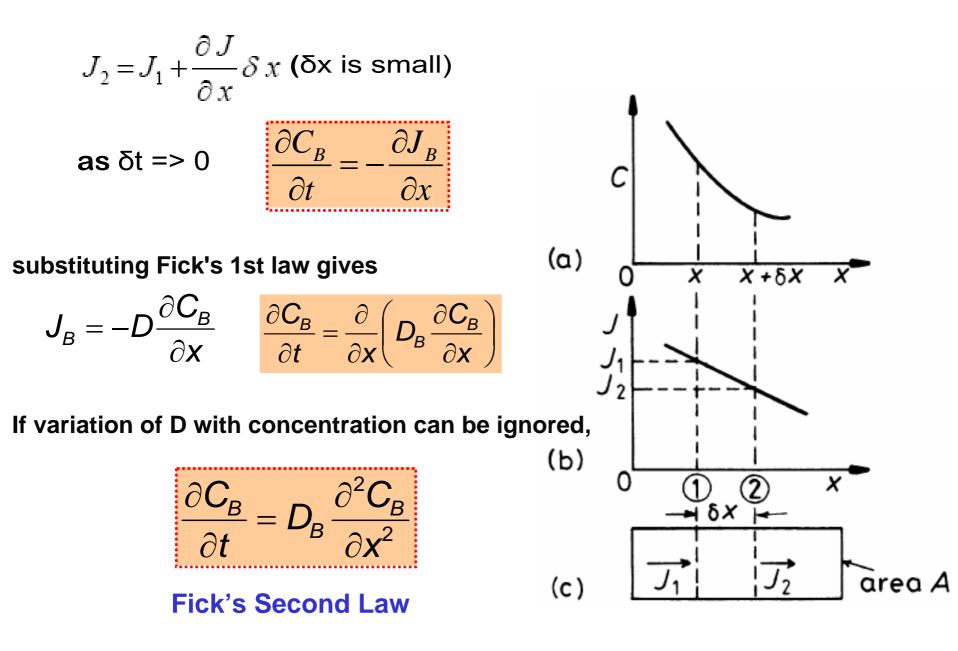
The number of interstitial B atoms that diffuse into the slice across plane (1) in a small time interval dt :

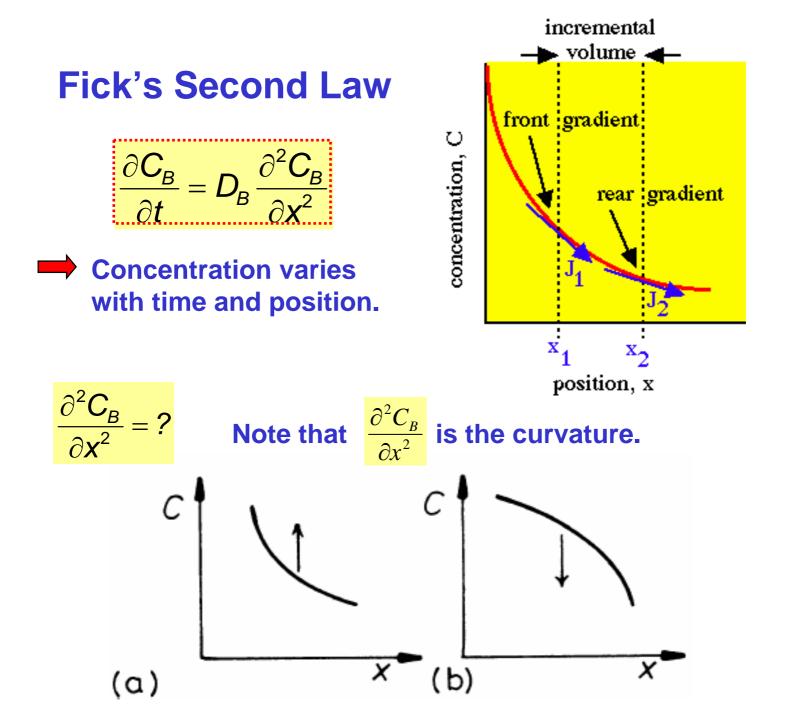
 \rightarrow J₁A dt Likewise : J₂A dt

Sine $J_2 < J_1$, the concentration of B within the slice will have increased by Due to mass conservation

$$(J_1 - J_2) A \delta t = \delta C_B A \delta x \qquad \delta C_B = \frac{(J_1 - J_2) A \delta t}{A \delta x}$$

Nonsteady-state diffusion





Solutions to the diffusion equations

Ex1. Homogenization

of sinusoidal varying composition in the elimination of segregation in casting

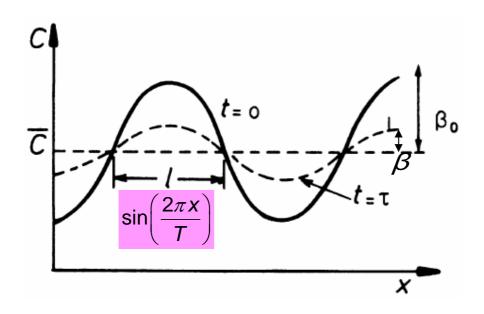


Fig. 2.10 The effect of diffusion on a sinusoidal variation of composition.

 \overline{C} : the mean composition l: half wavelength

 β_0 : the amplitude of the initial concentration profile

Initial or Boundary Cond.?

$$C = \overline{C} + \beta_0 \sin \frac{\pi x}{l} \quad \text{at t=0}$$

$$C = \overline{C} + \beta_0 \sin \frac{\pi x}{l} \exp\left(\frac{-t}{\tau}\right)$$

 $\tau = \frac{\iota}{\pi^2 D}$ τ : relaxation time

$$\beta = \beta_0 \exp(-t/\tau)$$
 at $x = \frac{l}{2}$

Rigorous solution of
$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$
 for $C(x,0) = \overline{C} + \beta_0 \sin \frac{\pi x}{l}$

변수분리법이용

Let C = XT $X \frac{dT}{dt} = DT \frac{d^2 X}{dx^2}$ $\frac{1}{DT} \frac{dT}{dt} = \frac{1}{X} \frac{d^2 X}{dx^2} = -\lambda^2$

 $\frac{1}{T}\frac{dT}{dt} = -\lambda^2 D \qquad \qquad \frac{d^2 X}{dx^2} + \lambda^2 X = 0$ $\frac{d\ln T}{dt} = -\lambda^2 D \qquad \qquad X = A'\cos\lambda x + B'\sin\lambda x$ $T = T_0 e^{\lambda^2 D t} \qquad \qquad X(x) \equiv \overline{C} + \beta_0 \sin\frac{\pi x}{l}$

$$\therefore C = (A \cos \lambda x + B \sin \lambda x)e^{-\lambda^2 Dt}$$
$$\therefore C = A_0 + \sum_{n=1}^{\infty} (A_n \sin \lambda_n x + B_n \cos \lambda_n x)$$
$$t = 0 \rightarrow C \equiv \overline{C} + \beta_0 \sin \frac{\pi x}{l}$$
$$; A_0 = \overline{C}, B_n = 0, A_1 = \beta_0$$

 $(A_n = 0 \text{ for all others})$

$$\therefore C \equiv \overline{C} + \beta_0 \sin \frac{\pi x}{l} e^{-\frac{t}{l^2/\pi^2 D}}$$
$$C = \overline{C} + \beta_0 \sin \frac{\pi x}{l} \exp\left(\frac{-t}{\tau}\right)$$

Solutions to the diffusion equations

Ex2. Carburization of Steel

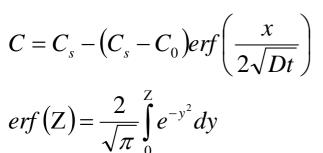
The aim of carburization is to increase the carbon concentration in the surface layers of a steel product in order to achiever a harder wear-resistant surface.

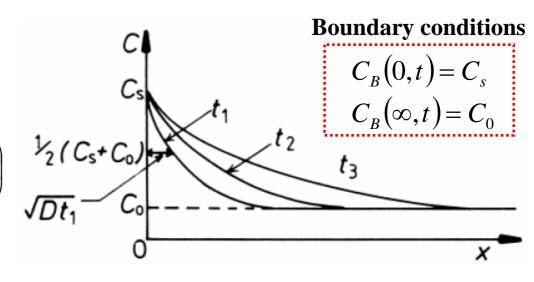
- 1. Holding the steel in CH₄ and/or Co at an austenitic temperature.
- 2. By controlling gases the concentration of C at the surface of the steel can be maintained at a suitable constant value.
- 3. At te same time carbon continually diffuses from the surface into the steel.

Carburizing of steel

Depth of Carburization?

The error function solution:





Fif. 2.11 Concentration profiles at successive times $(t_3 > t_2 > t_1)$ for diffusion into a semi-infinite bar when the surface concentration C_s is maintained constant.

$$\frac{C_{\rm s}-C}{C_{\rm s}-C_{\rm 0}} = erf\left(\frac{x}{2\sqrt{Dt}}\right) \qquad \text{erf(0.5)}\approx 0.5 \qquad C = \frac{C_{\rm s}+C_{\rm 0}}{2}$$

• Since erf(0.5) \approx 0.5 the depth at which the carbon concentration is midway between C_s and C₀ is given $(x/2\sqrt{Dt}) \cong 0.5$

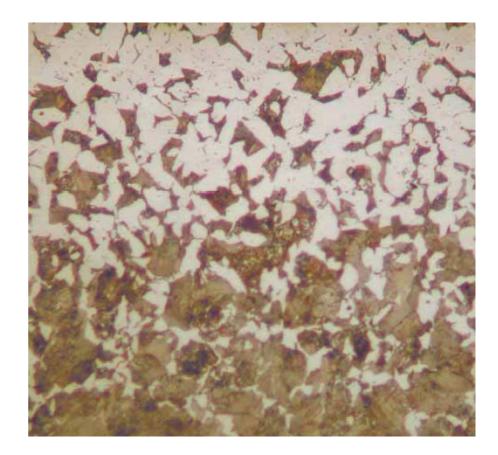
that is $x \cong \sqrt{Dt} \longrightarrow \text{Depth of Carburization}$

Carburizing of steel

Thus the thickness of the carburized layer is $\cong \sqrt{Dt}$. Note also that the depth of any isoconcentration line is directly proportion to \sqrt{Dt} , i.e. to obtain a twofold increase in penetration requires a fourfold increase in time.

Decarburization of Steel?

$$C = C_0 erf\left(\frac{x}{2\sqrt{Dt}}\right)$$



Error function

In mathematics, the error function (also called the Gauss error function) is a non-elementary function which occurs in probability, statistics and partial differential equations.

It is defined as:

$$\mathrm{erf}(x)=\frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{-t^{2}}dt.$$

By expanding the right-hand side in a Taylor series and integrating, one can express it in the form

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)n!} = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{3} + \frac{x^5}{10} - \frac{x^7}{42} + \frac{x^9}{216} - \cdots \right)$$

for every real number x. (From Wikipedia, the free encyclopedia)

Error function

 $\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} \exp(-y^{2}) dy$

Table 1-1. The Error Function

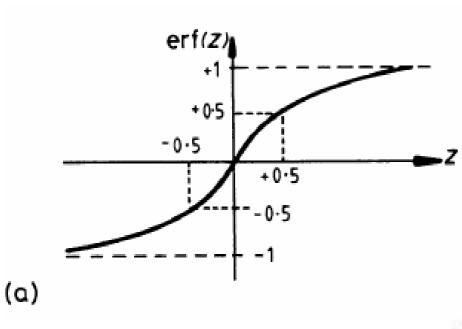


Fig. 2.12 (a) Schematic diagram illustrating the main features of the error function.

132	Ζ	$\operatorname{erf}(z)$	Ζ	$\operatorname{erf}(z)$
	0	0	0.85	0.7707
	0.025	0.0282	0.90	0.7969
	0.05	0.0564	0.95	0.8209
	0.10	0.1125	1.0	0.8427
	0.15	0.1680	1.1	0.8802
	0.20	0.2227	1.2	0.9103
	0.25	0.2763	1.3	0.9340
18	0.30	0.3286	1.4	0.9523
5	0.35	0.3794	1.5	0.9661
	0.40	0.4284	1.6	0.9763
	0.45	0.4755	1.7	0.9838
	0.50	0.5205	1.8	0.9891
	0.55	0.5633	1.9	0.9928
	0.60	0.6039	2.0	0.9953
	0.65	0.6420	2.2	0.9981
	0.70	0.6778	2.4	0.9993
191	0.75	0.7112	2.6	0.9998
52	0.80	0.7421	2.8	0.9999

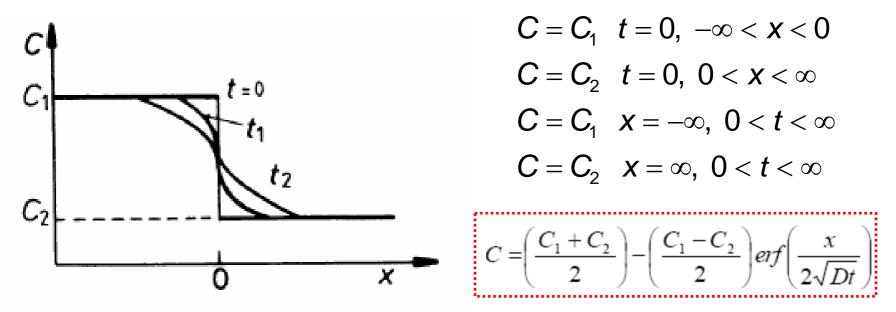
Solutions to the diffusion equations

Ex3. Diffusion Couple

Joining of two semi-infinite specimens of compositions C_1 and C_2 ($C_1 > C_2$)

Draw C vs. x with time t = 0 and t > 0.

Boundary conditions?



(Ь)

Fig. 2.12 (b) Concentration profiles at successive times ($t_2 > t_1 > 0$) when two semi-infinite bars of different composition are annealed after welding.

The section is completed with 4 example solutions to Fick's 2nd law: *carburisation, decarburisation, diffusion across a couple* and *homogenisation*.

The solutions given are as follows:

Process	Solution	
Carburisation	$C = C_{s} - (C_{s} - C_{0}) \operatorname{erf}\left(\frac{x}{2\sqrt{Dt}}\right)$ $C_{s} = \operatorname{Surface \ concentration}$ $C_{0} = \operatorname{Initial \ bulk \ concentration}$	
Decarburisation	$C = C_0 \operatorname{erf}\left(\frac{x}{2\sqrt{Dt}}\right)$ C ₀ = Initial bulk concentration	
Diffusion Couple	$C = \left(\frac{C_1 + C_2}{2}\right) - \left(\frac{C_1 - C_2}{2}\right) \operatorname{erf}\left(\frac{x}{2\sqrt{Dt}}\right)$ $C_1 = \text{Concentration of steel 1}$ $C_2 = \text{Concentration of steel 2}$	
Homogenisation	$C = C_{\text{mean}} + \beta_0 \sin\left(\frac{\pi x}{\lambda}\right) \exp\left(-\frac{t}{\tau}\right)$ $C_{\text{mean}} = \text{Mean concentration}$ $b_0 = \text{Initial concentration amplitude}$ $1 = \text{half-wavelength of cells}$ $t = \text{relaxation time}$	