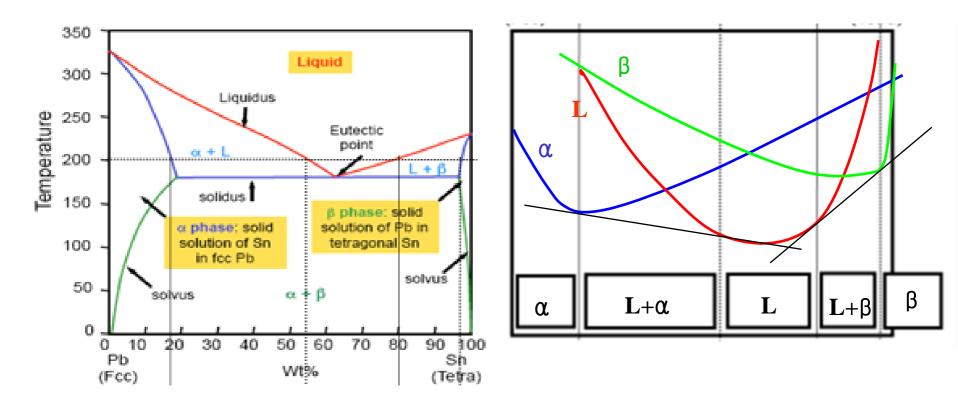
# 재료상변태

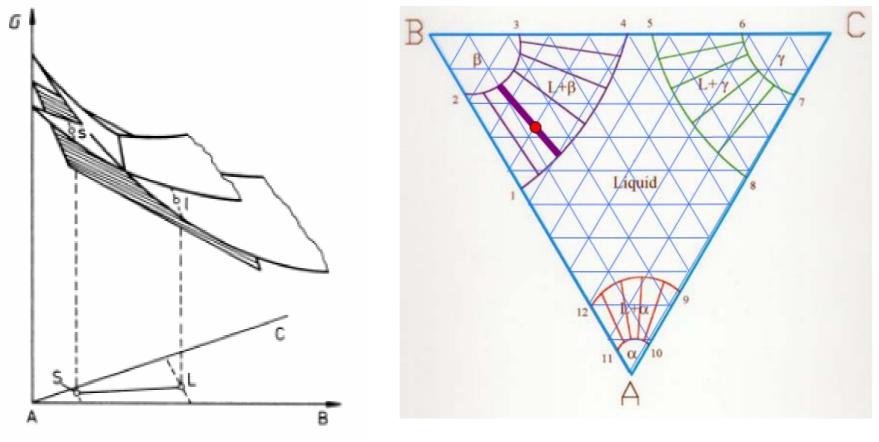
## **Phase Transformation of Materials**


2008.09.30.

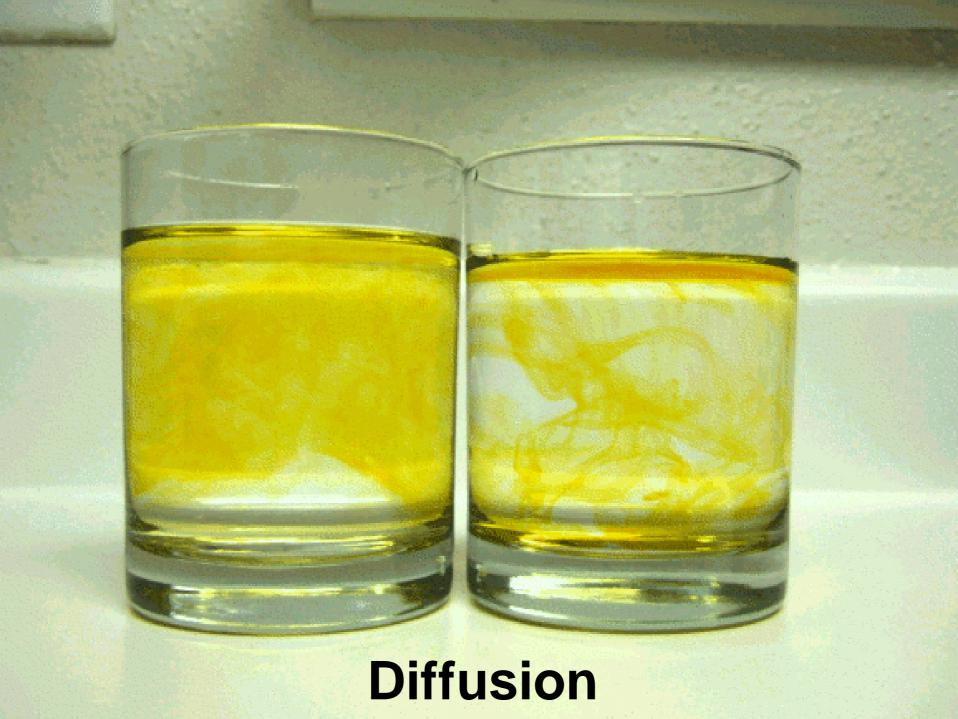
서울대학교 재료공학부

# **Contents for previous class**

- Ternary Equilibrium: Ternary Phase Diagram
- < Chapter 2 >
- Diffusion
- Interstitial Diffusion Fick's First Law
- Effect of Temperature on Diffusivity


## **Tie line:** binary system




\* Simple Eutectic Systems

$$\Delta H_{mix}^{L} = 0 \quad \Delta H_{mix}^{S} >> 0$$

## Tie line: ternary system

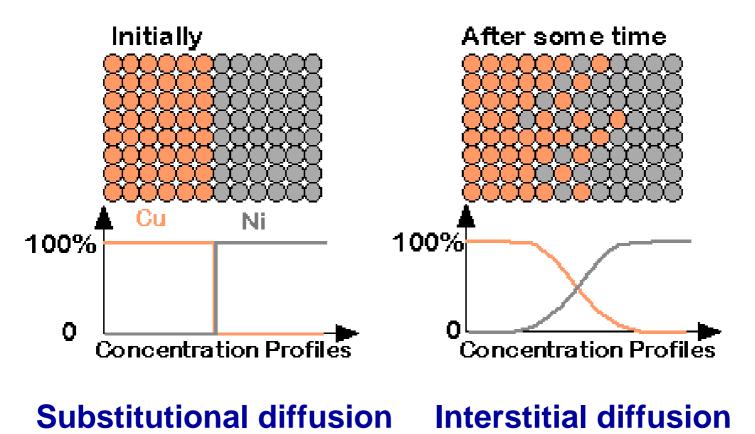


(ь)



# Diffusion

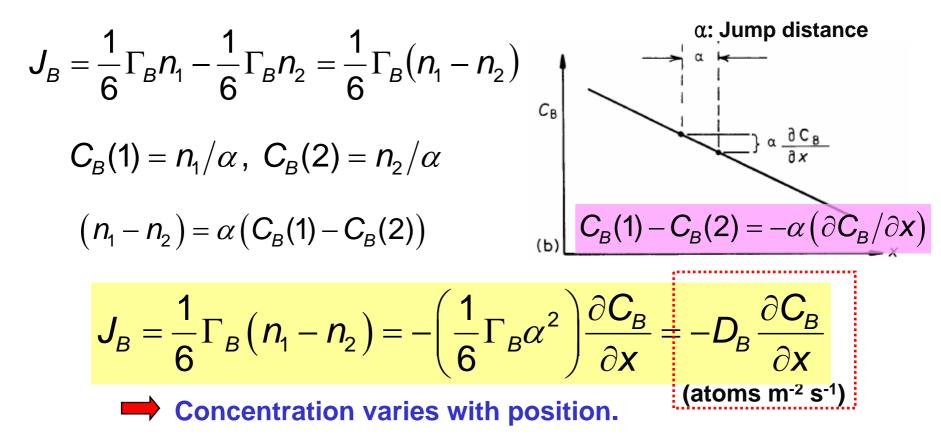
# **Diffusion** : Mechanism by which matter transported through matter


## What is the driving force for diffusion?

- $\Rightarrow$  a concentration gradient (x)
- ⇒ a chemical potential (o)

But this chapter will explain with concentration gradients for a convenience.

## **Diffusion:** THE PHENOMENON


• Interdiffusion: in a solid with more than one type of element (an alloy), atoms tend to migrate from regions of large concentration.

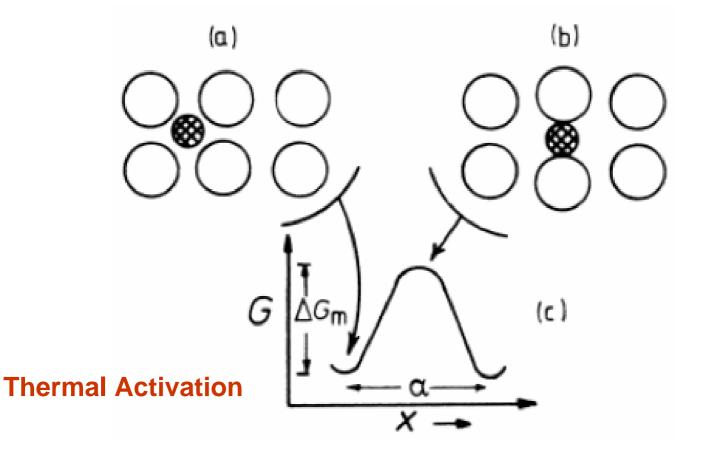


## **Interstitial diffusion**



## **Fick's First Law of Diffusion**




D<sub>B</sub>: Intrinsic diffusivity or Diffusion coefficient of B ⇒ depends on microstructure of materials Magnitude of D in various media

Gas :  $D \approx 10^{-1} \text{ cm}^2/\text{s}$ Liquid :  $D \approx 10^{-4} \sim 10^{-5} \text{ cm}^2/\text{s}$ Solid : Materials near melting temp.  $D \approx 10^{-8} \text{ cm}^2/\text{s}$ Elemental semiconductor (Si, Ge)  $D \approx 10^{-12} \text{ cm}^2/\text{s}$ 

## **EFFECT OF TEMPERATURE on Diffusivity**

**Temperature**  $\implies$   $\Gamma$   $\implies$  **D**, **Diffusivity** 

(Interstitial atom jumps times per second)



Thermally activated process

jump frequency  $\Gamma_B$ ?

$$\Gamma_{B} = Z \nu \exp(-\Delta G_{m} / RT)$$

Z : nearest neighbor sites

v : vibration frequency

 $\Delta \mathbf{G}_{\mathbf{m}}$  : activation energy for moving

$$\Delta G_{m} = \Delta H_{m} - T \Delta S_{m}, D_{B} = \frac{1}{6} \Gamma_{B} \alpha^{2} \}$$

$$D_{B} = \left[\frac{1}{6} \alpha^{2} Z v \exp(\Delta S_{m} / R)\right] \exp(-\Delta H_{m} / RT)$$

$$\Delta H_{m} \equiv Q_{ID}$$

$$D_{B} = D_{B0} \exp\frac{-Q_{ID}}{RT} \text{ (Arrhenius-type equation)}$$

## **Temperature Dependence of Diffusion**

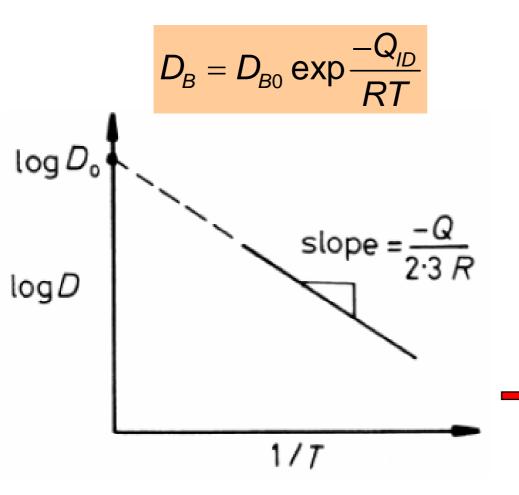
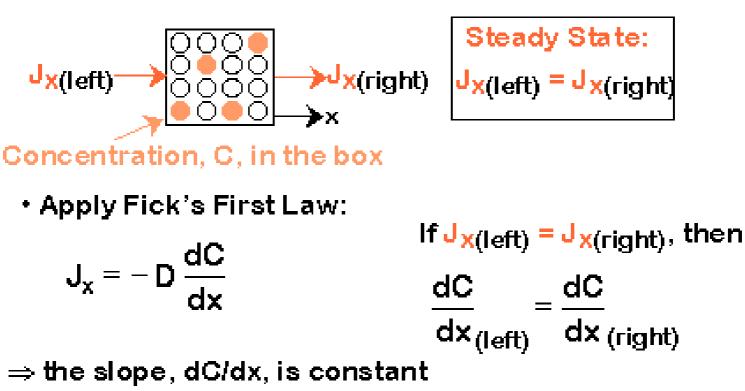



Fig. 2.7 The slope of log D v. 1/T gives the activation energy for diffusion Q.

How to determine Q<sub>ID</sub> experimentally?

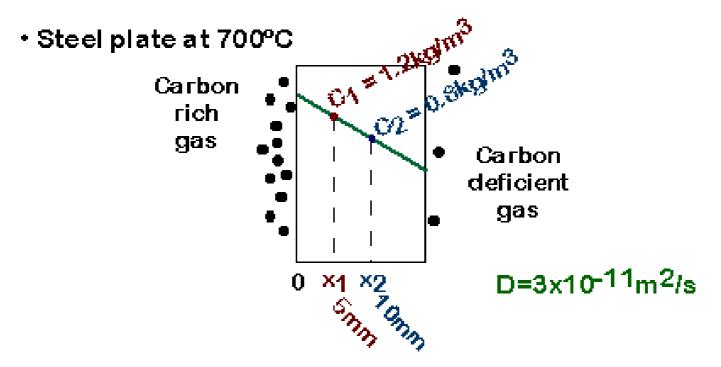
$$\log D = \log D_0 - \frac{Q}{2.3R} \left(\frac{1}{T}\right)$$


Therefore, from the slope of the D-curve in an log D vs 1/T coordinate, the activation energy may be found.

# **Contents for today's class**

- Steady-state diffustion Fick's First Law
- Nonsteady-state diffusion Fick's Second Law
- Solutions to the diffusion Equations

## **Steady-state diffusion**


The simplest type of diffusion to deal with is when the concentration at every point does not change with time.

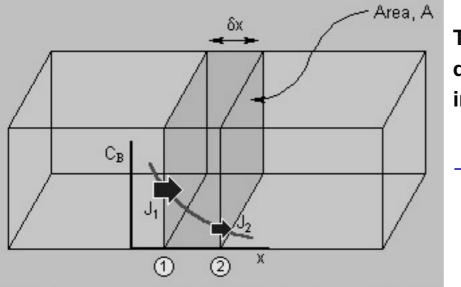


(does not vary with position)!

## **Steady-state diffusion**

The simplest type of diffusion to deal with is when the concentration at every point does not change with time.




Q: How much carbon is transferring from the rich to deficient side?

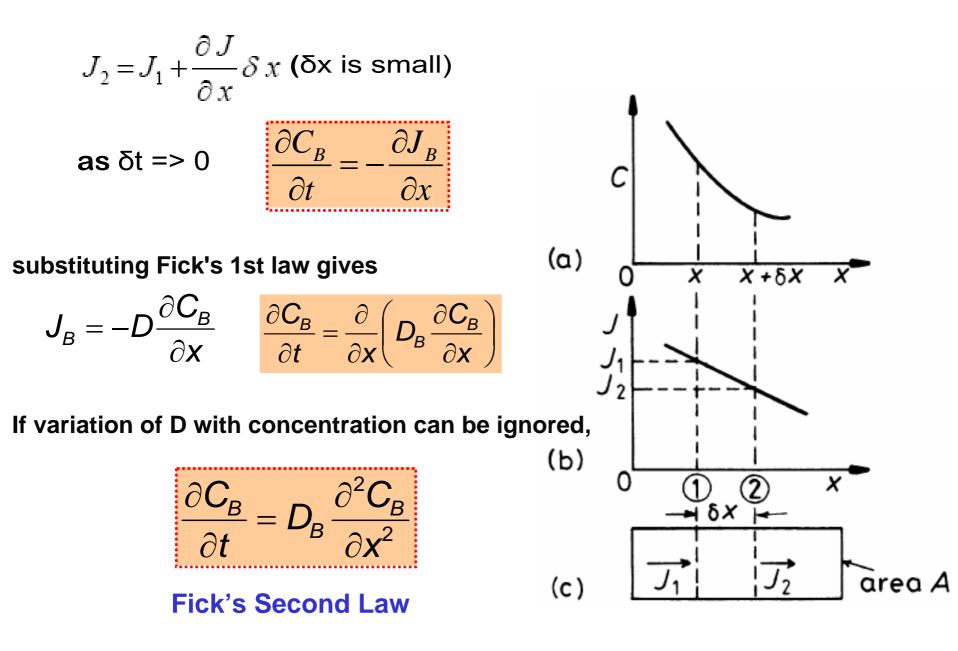
$$J = -D\frac{C_2 - C_1}{x_2 - x_1} = 2.4 \times 10^{-9} \frac{\text{kg}}{\text{m}^2 \text{s}}$$

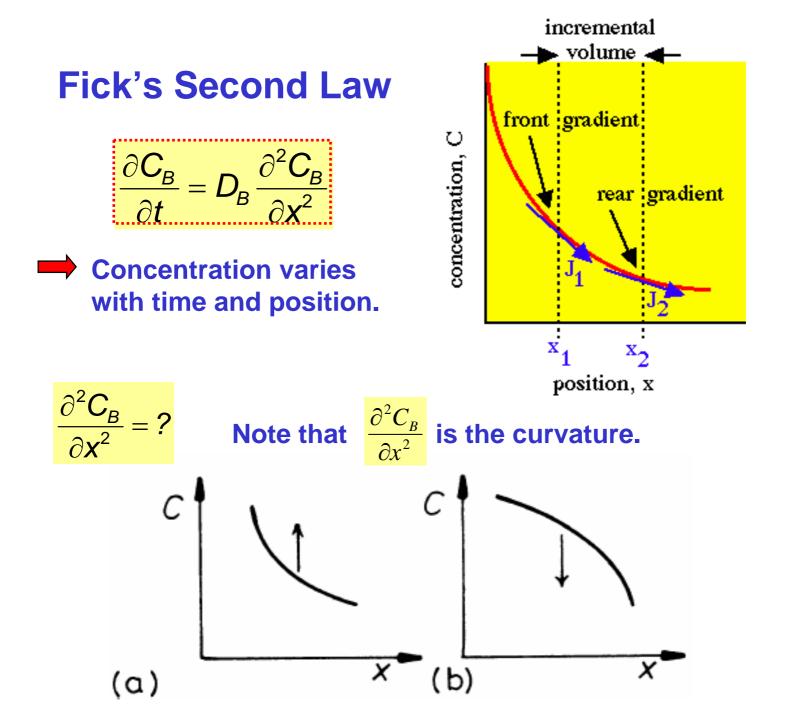
## **Nonsteady-state diffusion**

In most practical situations steady-state conditions are not established, i.e. concentration varies with both distance and time, and Fick's 1st law can no longer be used.

#### How do we know the variation of $C_B$ with time? $\rightarrow$ Fick's 2nd law




The number of interstitial B atoms that diffuse into the slice across plane (1) in a small time interval dt :


 $\rightarrow$  J<sub>1</sub>A dt Likewise : J<sub>2</sub>A dt

Sine  $J_2 < J_1$ , the concentration of B within the slice will have increased by Due to mass conservation

$$(J_1 - J_2) A \delta t = \delta C_B A \delta x \qquad \delta C_B = \frac{(J_1 - J_2) A \delta t}{A \delta x}$$

## **Nonsteady-state diffusion**







## Solutions to the diffusion equations

#### **Ex1.** Homogenization

of sinusoidal varying composition in the elimination of segregation in casting

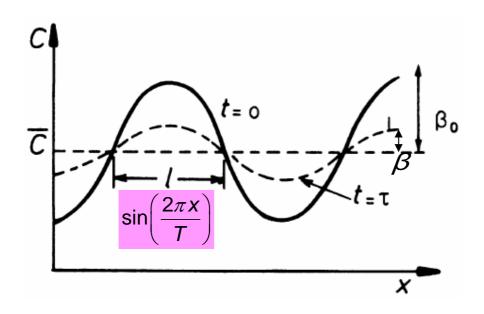



Fig. 2.10 The effect of diffusion on a sinusoidal variation of composition.

 $\overline{C}$ : the mean composition l: half wavelength

 $\beta_0$  : the amplitude of the initial concentration profile

Initial or Boundary Cond.?

$$C = \overline{C} + \beta_0 \sin \frac{\pi x}{l} \quad \text{at t=0}$$

$$C = \overline{C} + \beta_0 \sin \frac{\pi x}{l} \exp\left(\frac{-t}{\tau}\right)$$

 $\tau = \frac{\iota}{\pi^2 D}$   $\tau$  : relaxation time

$$\beta = \beta_0 \exp(-t/\tau)$$
 at  $x = \frac{l}{2}$ 

**Rigorous solution of** 
$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$
 for  $C(x,0) = \overline{C} + \beta_0 \sin \frac{\pi x}{l}$ 

변수분리법이용

Let C = XT  $X \frac{dT}{dt} = DT \frac{d^2 X}{dx^2}$  $\frac{1}{DT} \frac{dT}{dt} = \frac{1}{X} \frac{d^2 X}{dx^2} = -\lambda^2$ 

 $\frac{1}{T}\frac{dT}{dt} = -\lambda^2 D \qquad \qquad \frac{d^2 X}{dx^2} + \lambda^2 X = 0$  $\frac{d\ln T}{dt} = -\lambda^2 D \qquad \qquad X = A'\cos\lambda x + B'\sin\lambda x$  $T = T_0 e^{\lambda^2 D t} \qquad \qquad X(x) \equiv \overline{C} + \beta_0 \sin\frac{\pi x}{l}$ 

$$\therefore C = (A \cos \lambda x + B \sin \lambda x)e^{-\lambda^2 Dt}$$
$$\therefore C = A_0 + \sum_{n=1}^{\infty} (A_n \sin \lambda_n x + B_n \cos \lambda_n x)$$
$$t = 0 \rightarrow C \equiv \overline{C} + \beta_0 \sin \frac{\pi x}{l}$$
$$; A_0 = \overline{C}, B_n = 0, A_1 = \beta_0$$

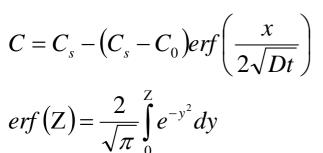
 $(A_n = 0 \text{ for all others})$ 

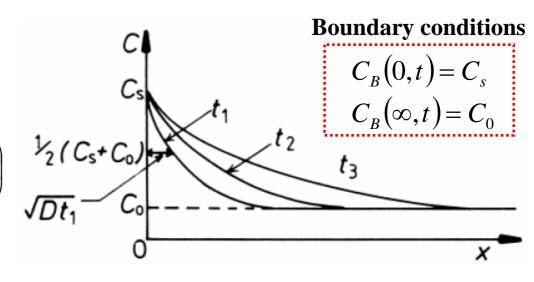
$$\therefore C \equiv \overline{C} + \beta_0 \sin \frac{\pi x}{l} e^{-\frac{t}{l^2/\pi^2 D}}$$
$$C = \overline{C} + \beta_0 \sin \frac{\pi x}{l} \exp\left(\frac{-t}{\tau}\right)$$

## Solutions to the diffusion equations

#### **Ex2. Carburization of Steel**

The aim of carburization is to increase the carbon concentration in the surface layers of a steel product in order to achiever a harder wear-resistant surface.


- 1. Holding the steel in CH<sub>4</sub> and/or Co at an austenitic temperature.
- 2. By controlling gases the concentration of C at the surface of the steel can be maintained at a suitable constant value.
- 3. At te same time carbon continually diffuses from the surface into the steel.




#### **Carburizing of steel**

#### **Depth of Carburization?**

The error function solution:

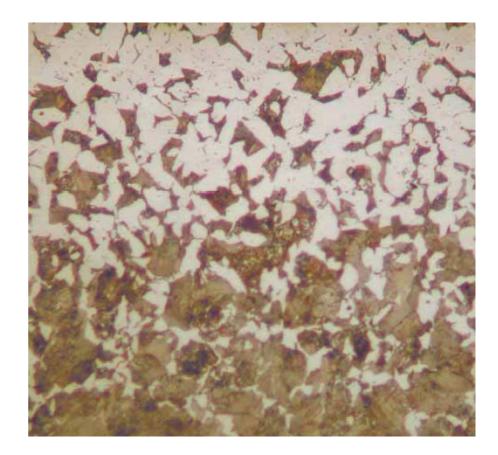




Fif. 2.11 Concentration profiles at successive times  $(t_3 > t_2 > t_1)$  for diffusion into a semi-infinite bar when the surface concentration  $C_s$  is maintained constant.

$$\frac{C_{\rm s}-C}{C_{\rm s}-C_{\rm 0}} = erf\left(\frac{x}{2\sqrt{Dt}}\right) \qquad \text{erf(0.5)}\approx 0.5 \qquad C = \frac{C_{\rm s}+C_{\rm 0}}{2}$$

• Since erf(0.5)  $\approx$  0.5 the depth at which the carbon concentration is midway between C<sub>s</sub> and C<sub>0</sub> is given  $(x/2\sqrt{Dt}) \cong 0.5$ 


that is  $x \cong \sqrt{Dt} \longrightarrow \text{Depth of Carburization}$ 

#### **Carburizing of steel**

Thus the thickness of the carburized layer is  $\cong \sqrt{Dt}$ . Note also that the depth of any isoconcentration line is directly proportion to  $\sqrt{Dt}$ , i.e. to obtain a twofold increase in penetration requires a fourfold increase in time.

## **Decarburization of Steel?**

$$C = C_0 erf\left(\frac{x}{2\sqrt{Dt}}\right)$$



## **Error function**

In mathematics, the error function (also called the Gauss error function) is a non-elementary function which occurs in probability, statistics and partial differential equations.

It is defined as:

$$\mathrm{erf}(x)=\frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{-t^{2}}dt.$$

By expanding the right-hand side in a Taylor series and integrating, one can express it in the form

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)n!} = \frac{2}{\sqrt{\pi}} \left( x - \frac{x^3}{3} + \frac{x^5}{10} - \frac{x^7}{42} + \frac{x^9}{216} - \cdots \right)$$

for every real number x. (From Wikipedia, the free encyclopedia)

#### **Error function**

 $\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} \exp(-y^{2}) dy$ 

Table 1-1. The Error Function

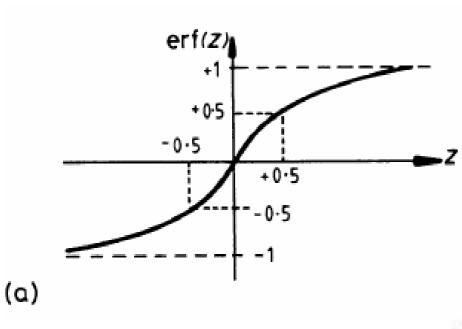
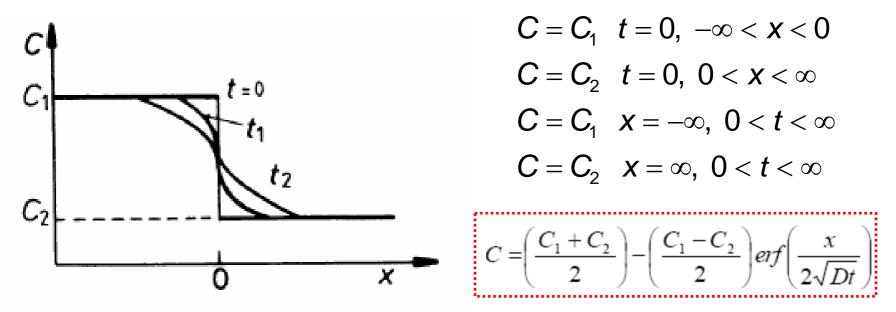



Fig. 2.12 (a) Schematic diagram illustrating the main features of the error function.

| 132 | Ζ     | $\operatorname{erf}(z)$ | Ζ    | $\operatorname{erf}(z)$ |
|-----|-------|-------------------------|------|-------------------------|
|     | 0     | 0                       | 0.85 | 0.7707                  |
|     | 0.025 | 0.0282                  | 0.90 | 0.7969                  |
|     | 0.05  | 0.0564                  | 0.95 | 0.8209                  |
|     | 0.10  | 0.1125                  | 1.0  | 0.8427                  |
|     | 0.15  | 0.1680                  | 1.1  | 0.8802                  |
|     | 0.20  | 0.2227                  | 1.2  | 0.9103                  |
|     | 0.25  | 0.2763                  | 1.3  | 0.9340                  |
| 18  | 0.30  | 0.3286                  | 1.4  | 0.9523                  |
| 5   | 0.35  | 0.3794                  | 1.5  | 0.9661                  |
|     | 0.40  | 0.4284                  | 1.6  | 0.9763                  |
|     | 0.45  | 0.4755                  | 1.7  | 0.9838                  |
|     | 0.50  | 0.5205                  | 1.8  | 0.9891                  |
|     | 0.55  | 0.5633                  | 1.9  | 0.9928                  |
|     | 0.60  | 0.6039                  | 2.0  | 0.9953                  |
|     | 0.65  | 0.6420                  | 2.2  | 0.9981                  |
|     | 0.70  | 0.6778                  | 2.4  | 0.9993                  |
| 191 | 0.75  | 0.7112                  | 2.6  | 0.9998                  |
| 52  | 0.80  | 0.7421                  | 2.8  | 0.9999                  |


## Solutions to the diffusion equations

#### **Ex3. Diffusion Couple**

Joining of two semi-infinite specimens of compositions  $C_1$  and  $C_2$  ( $C_1 > C_2$ )

Draw C vs. x with time t = 0 and t > 0.

**Boundary conditions?** 



#### (Ь)

Fig. 2.12 (b) Concentration profiles at successive times ( $t_2 > t_1 > 0$ ) when two semi-infinite bars of different composition are annealed after welding.

The section is completed with 4 example solutions to Fick's 2nd law: *carburisation, decarburisation, diffusion across a couple* and *homogenisation*.

The solutions given are as follows:

| Process          | Solution                                                                                                                                                                                                                                                                |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Carburisation    | $C = C_{s} - (C_{s} - C_{0}) \operatorname{erf}\left(\frac{x}{2\sqrt{Dt}}\right)$<br>$C_{s} = \operatorname{Surface \ concentration}$<br>$C_{0} = \operatorname{Initial \ bulk \ concentration}$                                                                        |  |
| Decarburisation  | $C = C_0 \operatorname{erf}\left(\frac{x}{2\sqrt{Dt}}\right)$<br>C <sub>0</sub> = Initial bulk concentration                                                                                                                                                            |  |
| Diffusion Couple | $C = \left(\frac{C_1 + C_2}{2}\right) - \left(\frac{C_1 - C_2}{2}\right) \operatorname{erf}\left(\frac{x}{2\sqrt{Dt}}\right)$<br>$C_1 = \text{Concentration of steel 1}$<br>$C_2 = \text{Concentration of steel 2}$                                                     |  |
| Homogenisation   | $C = C_{\text{mean}} + \beta_0 \sin\left(\frac{\pi x}{\lambda}\right) \exp\left(-\frac{t}{\tau}\right)$ $C_{\text{mean}} = \text{Mean concentration}$ $b_0 = \text{Initial concentration amplitude}$ $1 = \text{half-wavelength of cells}$ $t = \text{relaxation time}$ |  |