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2.8 Diffusion in multiple binary system

Pb-Sn phase diagram
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2.8 Diffusion in multiple binary system

A diffusion couple made by welding
together pure A and pure B

What would be the microstructure l'
evolved after annealing at T; ?

— a layered structure

containing a, B & Y. @ P ¥

Draw a phase distribution and composition profile
In the plot of distance vs. Xz after annealing at T,.

dislance —=

(D)
Draw a profile of activity of B atom, B
In the plot of distance vs. ag after annealing at T,.

A or B atom — easy to jump interface (local equil.)

— U %= PP AP =LY at interface

(@p=a,P, aP=ayY)




How can we formulate the interface (a/f, B/y) velocity?

If unit area of the interface moves a distance dx,
a volume (dx-1) will be converted

from a cor.ltgining Cg* atoms/m? (CB,B —Cg)dx ., shaded area§
to 3 containing CBB atoms/m3. T ;
Ce | d a—>B

|
| \"“"Vgx"'"'id x/dt (C§ —Cg)dx equal to
CE __________ A S S

which quantity?

Fig. 2.30. Concentration profile across the o/p mterface and its associated movement
assuming diffusion control.



Local equilibrium is assumed.

. Aflux of B towards the . i Aflux of B away from the
interface from the B phase interface into the a phase
b a
~ 0C.> i o <, 0Cq
J.,/ =-D(B)—2 | Jg"=-D(a)
ox OX
In atime dt, there will be an accumulation of B atoms given by
’ 0C 0J
ﬁ_ _ 0°C ) - = -

., .......................... @t aXZ at ax ORTTLTTITEPETD .

- [Jg-Jal dt : : dCdx :

........................ { (D(ﬂ)ﬁcbj_ (_D(a)ﬁia]} o C)dx

dx 1 ac = 8C,
V:dt:(CBb—CBa){ (@)= PP, }

(velocity of the a/f interface)




3. Crystal interfaces and microstructure

e Types of Interface

vapor

1. Free surface (solid/vapor interface)
‘ solid ‘

2. Grain boundary (a/ a interfaces)
> same composition, same crystal structure

> different orientation

3. inter-phase boundary (a/B interfaces)

a | = defect
O ®
<:> — energy )

> different composition &

crystal structure




3.1 Interfacial Free Energy
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Figure 5 - Experimental device to measure
the surface tension of a liguid.

Figure & - "U" frame in the
liquid under examination.




3.1. Interfacial free energy

Interfacial energy (y : J/m?)

— The Gibbs free energy of a system containing an interface of area A

- Gbulk + Gmterface ‘ vapor —> G= G0 + Y A
solid ‘

Interfacial energy (y ) vs. surface tension (F: a force per unit length)

1) work done : F dA =dG -
2)dG =y dA + A dy Liquid //‘/ /
—F=y +Ady/dA film —‘\\\ / F

In case of a lig. film, dy/dA—O F=y (N/m=J/m? /
d

Ex) lig. : dy /dA=0 : Why? Rearrangement

sol. : dy /dA + 0, but, very small value
_ Fig. 3.1 A hquid film on a wire frame.
At near melting temperature dy /JdA =0



3.2 Solid / Vapor Interfaces

* Hard sphere model

- Fcc : density of atoms in these planes decreases as (h2+k2+l2) increases

Origin of the surface free energy? - Broken Bonds

For (111) plane  CN=12 [111]
v

# of Broken Bonds per atom at surface?



# of Broken Bonds per atom at surface? - 3 per atom




For (111) plane

# of broken bond at surface : 3 broken bonds
Bond Strength: € >>for each atom : &/2

Lowering of Internal Energy per Bond: 3¢/2 |

For (200) plane CN=12 /:) /) /d
*-J ‘-J ‘\-)

# of Broken Bonds per atom at surface?



For (200) plane CN=12

# of Broken Bonds per atom at surface?

# of broken bond at surface : 4 broken bonds
Bond Strength: € >> for each atom : €/2

Lowering of Internal Energy per Bond: 4€/2 |



For (100) plane

# of broken bond at surface : 3 broken bonds
Bond Strength: € >>for each atom : &/2

Lowering of Internal Energy per Bond: 3€/2

Heat of Sublimation in terms of €? — L. = 12 N, e/2

Energy per atom of a {111} Surface?

Es,=3¢/2=0.25Lg /N, Egy VS ¥ ?

v interfacial energy = free energy (J/m2)
=y =G=H-TS
=E+PV-TS ( PVisignored)

—>v =E,, — TS, (S, thermal entropy, configurational entropy)

due to increased contribution of entropy



 Average Surface Free Energies of Selected Metals

2

Crystal 1,/C Yoo, MJ M
Sn 232 680
Al 660 1080
Ag 961 1120
Au 1063 1390
Cu 1084 1720

&-Fe 1536 2080
Pt 1769 2280
W 3407 2650

yof Sn: 680 mJ/m2 (T, :232°C) C.F. G.B. energy 1y, is about one third of y,,

yof Cu : 1720 mJ/m2 (T, : 1083°C)

Higher T,
>> stronger bond (large negative bond energy)
>> larger surface energy
e The measured y values for pure metals near the melting temperature

v =0.15 L /N, J/surface atom



Surface energy for high or irrational {hkl} index

Closer surface packing, >> smaller number of broken bond
>> |lower surface energy

A crystal plane at an angle 0 to the close-packed plane will contain broken
bonds in excess of the close-packed plane due to the atoms at the steps.
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Fig. 3.3 The ‘broken-bond’ model for surface energy. (Cose/a)(lla) . broken bonds
from the atoms on the steps

(sin|©|/a)(1/a): additional broken bonds
from the atoms on the steps



Surface energy for high or irrational {hkl} index

(cos©/a)(1/a) : broken bonds from the atoms on the steps
(sin|©J/a)(1/a) : additional broken bonds from the atoms on the steps

Attributing €/2 energy to each broken bond, £l
. - \
1 &(cos@ sinlf)|
EST_." — _| —|_
* >

Ixa 2l a a
- : E-O plot

z—:(cms G + 3111( ‘:9 ‘ ) ) : -
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Fig. 3.4 Variation of surface energy as a function of &

 The close-packed orientation (6 = 0) lies at a cusped minimum in the E plot.

o Similar arguments can be applied to any crystal structure
for rotations about any axis from any reasonably close-packed plane.

» All low-index planes should therefore be located at low-energy cusps.

Equilibrium shape of a crystal?
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Equilibrium shape: Wulff surface

Distance from center : y,,

Several plane A;, A, etc. with energy v, , v,
Total surface energy : Ay, + Ay, ...

=> Ay, — minimum

— equilibrium morphology

Analytical solution in 2D is reported

How is the equilibrium shape
determined? TTPOTTISTTISTHTSSETHSPTTRSPOOISS :




Equilibrium shape: Wulff surface

L D

{a) Wulff Shape | (b} Wulff Shape |l

® @

(c) Unicn of L and |l {(d) Intersection of | and |l

Figure 1: The process of WuUlf shape intersection for two cubic Wulff shapes with displaced ariging and
rotated coordinate systems. Each individual shape has cubic symmetry m37 and [100] facets.




Equilibrium shape: Wulff surface

A Wulff plane

(001

Y plot

(111)

m

Equilibrium
shape

(a)

Equilibrium shape can be determined experimentally

by annealing small single crystals (high T, inert atmosphere)
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