재료상변태

Phase Transformation of Materials

2008.10.14.

서울대학교 재료공학부

Contents for previous class

- Tracer Diffusion in Binary Alloys
- Diffusion in Ternary Alloy
- High-Diffusivity Paths

1) Diffusion along Grain Boundaries and Free Surface

2) Diffusion Along Dislocation

• Diffusion in Multiphase Binary Systems

Contents for today's class

• Diffusion in multiphase binary system

Chapter 3 Crystal Interfaces and Microstructure

- Interfacial Free Energy
- Solid/Vapor Interfaces

2.8 Diffusion in multiple binary system

2.8 Diffusion in multiple binary system

How can we formulate the interface (α/β , β/γ) velocity?

If unit area of the interface moves a distance dx, a volume (dx·1) will be converted from α containing C_B^{α} atoms/m³ to β containing C_B^{β} atoms/m³.

Fig. 2.30. Concentration profile across the α/β interface and its associated movement assuming diffusion control.

Local equilibrium is assumed.

A flux of B towards the interface from the β phase $J_B^{\ \ \beta} = -\tilde{D}(\beta) \frac{\partial C_B^{\ \ b}}{\partial x}$

A flux of B away from the interface into the α phase

 $J_{B}^{\ \alpha} = -\tilde{D}(\alpha) \frac{\partial C_{B}^{\ \alpha}}{\partial x}$

In a time dt, there will be an accumulation of B atoms given by

$$\frac{\partial C}{\partial t} = -D \frac{\partial^2 C}{\partial x^2} \implies \frac{\partial C}{\partial t} = -\frac{\partial J}{\partial x}$$

$$\begin{cases} -\left(\tilde{D}(\beta) \frac{\partial C_B^b}{\partial x}\right) - \left(-\tilde{D}(\alpha) \frac{\partial C_B^a}{\partial x}\right) \\ -\left(\tilde{D}(\alpha) \frac{\partial C_B^b}{\partial x}\right) - \left(\tilde{D}(\alpha) \frac{\partial C_B^a}{\partial x}\right) \\ \frac{\partial C}{\partial t} = \frac{1}{(C_B^{\ b} - C_B^{\ a})} \\ (\text{velocity of the } \alpha/\beta \text{ interface}) \end{cases} dCdx$$

3. Crystal interfaces and microstructure

- Types of Interface
- 1. Free surface (solid/vapor interface)
- **2.** Grain boundary (α / α interfaces)
 - > same composition, same crystal structure
 - > different orientation
- **3. inter-phase boundary (** α / β interfaces)
 - > different composition &
 - crystal structure

vapor

solid

3.1 Interfacial Free Energy

Figure 5 - Experimental device to measure the surface tension of a liquid.

3.1. Interfacial free energy

Interfacial energy $(\gamma : J/m^2)$

 \rightarrow The Gibbs free energy of a system containing an interface of area A

$$\rightarrow \mathbf{G}_{\text{bulk}} + \mathbf{G}_{\text{interface}} \qquad \begin{array}{c} \text{vapor} \\ \text{solid} \end{array} \qquad \rightarrow \mathbf{G} = \mathbf{G}_0 + \gamma \mathbf{A}$$

Interfacial energy (γ) vs. surface tension (F: a force per unit length)

3.2 Solid / Vapor Interfaces

- * Hard sphere model
- Fcc : density of atoms in these planes decreases as (h²+k²+l²) increases
- Origin of the surface free energy? \rightarrow **Broken Bonds**

of Broken Bonds per atom at surface? → 3 per atom

For (111) plane

of broken bond at surface : 3 broken bonds Bond Strength: ε >> for each atom : $\varepsilon/2$ Lowering of Internal Energy per Bond: $3\varepsilon/2 \downarrow$

For (200) plane CN=12

of Broken Bonds per atom at surface?

of Broken Bonds per atom at surface?

of broken bond at surface : 4 broken bonds Bond Strength: ε >> for each atom : $\varepsilon/2$ Lowering of Internal Energy per Bond: $4\varepsilon/2 \downarrow$

For (100) plane

of broken bond at surface : 3 broken bonds Bond Strength: $\varepsilon >>$ for each atom : $\varepsilon/2$ Lowering of Internal Energy per Bond: $3\varepsilon/2$

Heat of Sublimation in terms of ϵ ? $\rightarrow L_s = 12 N_a \epsilon/2$

Energy per atom of a {111} Surface?

 $E_{sv} = 3 \epsilon/2 = 0.25 L_s / N_a$

E_{sv} vs γ ?

 γ interfacial energy = free energy (J/m²)

 $\rightarrow \gamma = \mathbf{G} = \mathbf{H} - \mathbf{TS}$

= E + PV – TS (: PV is ignored)

 $\rightarrow \gamma = \mathbf{E}_{sv} - \mathbf{TS}_{sv} (\mathbf{S}_{sv} \text{ thermal entropy, configurational entropy})$ $\rightarrow \partial \gamma / \partial \mathbf{T} = -\mathbf{S} : surface energy decreases with increasing T$ due to increased contribution of entropy

Crystal	$T_{\mathfrak{m}}/^{\circ}\mathbf{C}$	$\gamma_{sv}/mJ~m^{-2}$	
Sn	232	680	
Al	660	1080	
Ag	961	1120	
Au	1063	1390	
Cu	1084	1720	
δ-Fe	1536	2080	
Pt	1769	2280	
w	3407	2650	

• Average Surface Free Energies of Selected Metals

 γ of Sn : 680 mJ/m² (T_m : 232°C) γ of Cu : 1720 mJ/m² (T_m : 1083°C) C.F. G.B. energy γ_{gb} is about one third of γ_{sv}

Higher T_m,

>> stronger bond (large negative bond energy)

>> larger surface energy

• The measured γ values for pure metals near the melting temperature

 $\gamma_{sv} = 0.15 L_s / N_a$ J / surface atom

$$high T_m \to high L_s \to high \gamma_{sv}$$

Surface energy for high or irrational {hkl} index

Closer surface packing, >> smaller number of broken bond >> lower surface energy

A crystal plane at an angle θ to the close-packed plane will contain broken bonds in excess of the close-packed plane due to the atoms at the steps.

Fig. 3.3 The 'broken-bond' model for surface energy.

(cos⊖/a)(1/a) : broken bonds from the atoms on the steps

 $(\sin|\Theta|/a)(1/a)$: additional broken bonds from the atoms on the steps

Surface energy for high or irrational {hkl} index

 $(\cos\Theta/a)(1/a)$: broken bonds from the atoms on the steps $(\sin|\Theta|/a)(1/a)$: additional broken bonds from the atoms on the steps

Fig. 3.4 Variation of surface energy as a function of Θ

- The close-packed orientation (θ = 0) lies at a cusped minimum in the E plot.
- Similar arguments can be applied to any crystal structure for rotations about any axis from any reasonably close-packed plane.
- All low-index planes should therefore be located at low-energy cusps.

Equilibrium shape of a crystal?

• 기지와 β 입자와의 평형을 고려함에 있어서,

-자유에너지는 입자 모양이 고정된 경우는 입자의 크기에 대해 최소화된다. -그러나 입자의 크기가 고정화 된다면 자유에너지는 모양에 대해 최소값을 가질 것이다.

Equilibrium shape: Wulff surface

Distance from center : \forall_{sv} Several plane A_1 , A_2 etc. with energy γ_1 , γ_2 Total surface energy : $A_1\gamma_1 + A_2\gamma_2$... = $\sum A_i\gamma_i \rightarrow minimum$ \rightarrow equilibrium morphology

Analytical solution in 2D is reported

How is the equilibrium shape determined?

Equilibrium shape: Wulff surface

Figure 1: The process of Wulff shape intersection for two cubic Wulff shapes with displaced origins and rotated coordinate systems. Each individual shape has cubic symmetry *m*3*m* and **[100]** facets.

Equilibrium shape: Wulff surface

Equilibrium shape can be determined experimentally by annealing small single crystals (high T, inert atmosphere)

