재료상변태

Phase Transformation of Materials

2008. 10. 16.

박 은 수

서울대학교 재료공학부

Contents for previous class

Diffusion in multiphase binary system

Chapter 3 Crystal Interfaces and Microstructure

- Interfacial Free Energy
- \rightarrow The Gibbs free energy of a system containing an interface of area A

 $\rightarrow \mathbf{G}_{\text{bulk}} + \mathbf{G}_{\text{interface}} \qquad \begin{array}{c} \text{vapor} \\ \text{solid} \end{array} \qquad \rightarrow \mathbf{G} = \mathbf{G}_0 + \gamma \mathbf{A}$

Solid/Vapor Interfaces

Origin of the surface free energy? \rightarrow Broken Bonds Equilibrium shape \rightarrow Wulff surface

Surface energy for high or irrational {hkl} index

A crystal plane at an angle θ to the close-packed plane will contain broken bonds in excess of the close-packed plane due to the atoms at the steps.

(cosθ/a)(1/a) : broken bonds from the atoms on the steps
 (sin|θ|/a)(1/a): additional broken bonds from the atoms on the steps

Contents for today's class

• Boundaries in Single-Phase Solids

(a) Low-Angle and High-Angle Boundaries

(b) Special High-Angle Grain Boundaries

(c) Equilibrium in Polycrystalline Materials

Boundaries in Single-Phase Solids

grain boundary

(hkl)

 \rightarrow

1) misorientation of lattice in two grains

2) orientation of grain boundary

Single phase Poly grain

3.3 Boundaries in Single-Phase Solids

symmetric tilt or twist boundary non-symmetric tilt or twist boundary

3.3.1 Low-Angle and High-Angle Boundaries

Low-Angle Boundaries

(a)

Symmetrical low-angle tilt boundary

Symmetrical low-angle twist boundary

Fig. 3. 7 (a) Low-angle tilt boundary, (b) low-angle twist boundary: ○ atoms in crystal below, • atoms in crystal above boundary. (After W.T. Read Jr., *Dislocations in crystals*, McGraw-Hill, New York, 1953.)

tilt Boundaries

Figure 1 - 23° symmetric tilt boundary about a <001> axis. The circles with dashed lines represent one layer and the circles with solid lines the other layer of the AB....stacked {001} planes. The atoms labelled A and B denote the structural unit.

Figure 2 - 23° symmetric tilt boundary about a <001> axis. Δ represent one layer and 0 represent the other layer of the AB.... stacked {001} planes. The ledge like character of the boundary is shown by the dashed lines.

Dislocations

twist Boundaries

Figure 2. A screw dislocation; note the screw-like 'slip' of atoms in the upper part of the lattice

Screw dislocation

Growth of Screw dislocation

twist Boundaries

45°, (010) symmetric twist GB

Asymmetric GB with tilt and twist components

Non-symmetric Tilt Boundary

Fig. 3.8 An unsymmetric tilt boundary, Dislocations with two different Burgers vectors are present. (After W.T. Read Jr., Dislocations in Crystals, McGraw-Hill, New York, 1953.)

If the boundary is unsymmetrical, dislocations with different Burgers vectors are required to accommodate the misfit.

In general boundaries of a mixture of the tilt and twist type, \rightarrow several sets of different edges and screw dislocations.

3.3.1 Low-Angle and High-Angle Boundaries

Low-Angle tilt Boundaries

→ around edge dislocation : strain ↑
but, LATB ~ almost perfect matching

(a)

3.3.1 Low-Angle and High-Angle Boundaries

- **Low-Angle tilt Boundaries** \rightarrow around edge dislocation : strain \uparrow but, LATB ~ almost perfect matching
 - \rightarrow g.b. energy : $\gamma_{g.b.} \rightarrow$ E /unit area (energy induced from dis.)
 - * Relation between D and γ ?

 $\sin\theta = b/D$, at low angle

- \rightarrow D=b/ θ \rightarrow $\gamma_{q.b.}$ is proportional to 1/D
- \rightarrow low angle tilt boundary
- \rightarrow Density of edge dis.

(cf. low angle twist boundary \rightarrow screw dis.)

(a)

Low-Angle tilt Boundaries

 \implies As θ increases, $\gamma_{g.b.} \uparrow$

 $\rightarrow \gamma_{g.b.}$ increases and the increasing rate of γ (=d γ /d θ) decreases.

 \rightarrow if θ increases further, it is impossible to physically identify the individual dislocations

Soap Bubble Model

Fig. 3.11 Rafts of soap bubbles showing several grains of varying misorientation. Note that the boundary with the smallest misorientation is made up of a row of dislocations, whereas the high-angle boundaries have a disordered structure in which individual dislocations cannot be identified. (After P.G. Shewmon, *Transformations in Metals*, McGraw-Hill, New York, 1969, from C.S. Smith.)

High Angle Grain Boundary

Fig. 3.10 Disordered grain boundary structure (schematic).

High angle boundaries contain large areas of poor fit and have a relatively open structure.

 \rightarrow high energy, high diffusivity, high mobility (?) (cf. segregated gb)

High Angle Grain Boundary

Low angle boundary

 \rightarrow almost perfect matching (except dislocation part)

High angle boundary (almost)

 \rightarrow open structure, large free volume

* low and high angle boundary

high angle $\gamma_{g.b.} \approx 1/3 \gamma_{S/V.} \rightarrow Broken Bonds$

Crystal	$\gamma_b/mJ\ m^{-2}$	T/°C	γ_b/γ_{sv}	
Sn	164	223	0.24	
Al	324	450	0.30	
Ag	375	950	0.33	
Au	378	1000	0.27	
Cu	625	925	0.36	
γ-Fe	756	1350	0.40	
δ-Fe	468	1450	0.23	
Pt	660	1300	0.29	
W	1080	2000	0.41	

Measured high-angle grain boundary energies

Special High-Angle Grain Boundaries

: high angle boundary but with low $\gamma_{\text{g.b.}}$

Twin boundary

Twin boundary

Twin boundary

Special High-Angle Grain Boundaries

(c) Twin boundary energy as a function of the grain boundary orientation

 Table 3.3 Measured Boundary Free Energies for Crystals in Twin Relationships

 (Units mJ/m²)

Crystal	Coherent twin boundary energy	Incoherent twin boundary energy	Grain boundary energy
Cu Ag Fe-Cr-Ni (stainless steel type 304)	21 8 19	<< 498 126 209	< 623 377 835

Special High-Angle Grain Boundaries

Fig. 3.13 Measured grain boundary energies for symmetric tilt boundaries in Al (a) When the rotation axis is parallel to <100>, (b) when the rotation axis is parallel to <110>. (After G. Hasson and C. Goux, Scripta Metallurgica, 5 (1971) 889.)

Why are there cusps in Fig. 3.13 (b)?

Fig. 3. 14 Special grain boundary. (After H. Gleiter, Physica Status Solidi (b) 45 (1971) 9.)

Equilibrium in Polycrystalline Materials

Fig. 3.15 Microstructure of an annealed crystal of austenitic stainless steel. (After P.G. Shewmon, Transformations in Metals, McGraw-Hill, New York, 1969)

Poly grain material

Fig. 3.15 Microstructure of an annealed crystal of austenitic stainless steel. (After P.G. Shewmon, *Transformations in Metals*, McGraw-Hill, New York, 1969.)

- → $\gamma_{g.b.}$ → metastable equilibrium (equil. (no g.b.))
- $\rightarrow \gamma_{\text{g.b}}~$ is minimum
- \rightarrow force acting on junction of

g.b. segment

P is moved at a small distance(δy)

- A. work done by $: F_v \delta y$
- B. increase boundary energy caused

by the change in orientation $\delta\theta \sim l (d\gamma/d\theta) \delta\theta$

 $F_y \delta y = l (dγ/dθ) \delta θ$ → $F_y = dγ/dθ$ torque force

 \rightarrow segment of g.b. moves to low energy position

* general high angle boundary : $d\gamma/d\theta \approx 0$

 \rightarrow consider more simply

Measurement of grain-boundary energy using g.b groove profile annealing a specimen at a high temperature and then measure the angle at the intersection of the surface with the boundary

If the solid-vapor energy $(\gamma_{S/V})$ is the same for both grains,

$$2\gamma_{SV}\cos\frac{\theta}{2} = \gamma_b$$

Fig. 3. 18 The balance of surface and grain boundary tensions at the intersection of a grain boundary with a free surface.

3.3.4. Thermally Activated Migration of Grain Boundaries

If the boundary is curved in the shape of cylinder, Fig. 3.20a, it is acted on by a force of magnitude γ /r towards its center of curvature.

Therefore, the only way the boundary tension forces can balance in three dimensions is if the boundary is planar ($r = \infty$) or if it is curved with equal radii in opposite directions, Fig. 3.20b and c.

Fig. 3.20 (a) A cylindrical boundary with a radius of curvature r is acted on by a force γ/r . (b) A planar boundary with no net force. (c) A doubly curved boundary with no net force.

Direction of Grain Boundary Migration during Grain Growth

For isotropic grain boundary energy in two dimensions, Equilibrium angle at each boundary junction? $\rightarrow 120^{\circ}$

Fig. 3.21 Two-dimensional grain boundary configurations. The arrows in

Equilibrium angle at each boundary junction in $3D? \rightarrow 109^{\circ}28'$

Grain Growth (Soap Bubble Model)

Fig. 3.22 Two-dimensional cells of a soap solution illustration the process of grain growth. Numbers are time in minutes. (After C.S. Smith, Metal Interfaces, American Society for Metals, 1952, p. 81.)

Example of Grain Growth simulation in 3D

결실의 계절 가을에 중간고사 준비 열심히 해서 모두 좋은 결과 있기를 ...^^