재료상변태

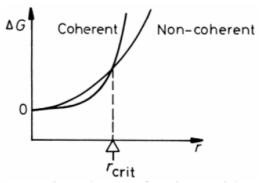
Phase Transformation of Materials

2008. 11. 06.

서울대학교 재료공학부

Contents for previous class

Coherency Loss



- Type of Interfaces
 - Glissile Interface: Military, Athermal: Shape change
 - Non-Glissile Interface: Civilian, Thermal
- Solid/Liquid Interfaces

Faceted interface > L_f/T_m≈ 4R > Diffuse interface: 대부분의 금속 ~ R

• Interface Migration

At interface, High Mobility: $\Delta \mu_B^i$ small, $X_i \approx X_e$, Diffusion-Control

Low Mobility: $\Delta \mu_B^i$ must be large, Mixed-Control

Very low Mobility: Xi \approx X_o, $\left(\frac{\partial C}{\partial X}\right)_{\text{intrface}} \approx 0$, Interface-Control

Contents for today's class

- Nucleation in Pure Metals
- Homogeneous Nucleation
 - formation of atomic cluster
 - homogeneous nucleation rate
- Heterogeneous Nucleation
- Nucleation of melting

4. Solidification:

Liquid — Solid

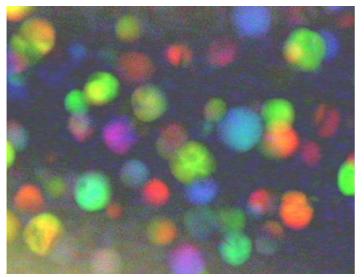
- casting
- single crystal growth
- directional solidification
- rapid solidification

4.1. Nucleation in Pure Metals

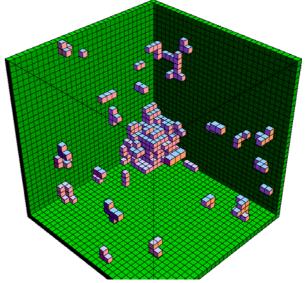
- \mathbf{T}_{m} : \mathbf{G}_{L} = \mathbf{G}_{S}
- Undercool (supercool) for nucleation: 250 K ~ 1 K

<Types of nucleation>

- Homogeneous nucleation



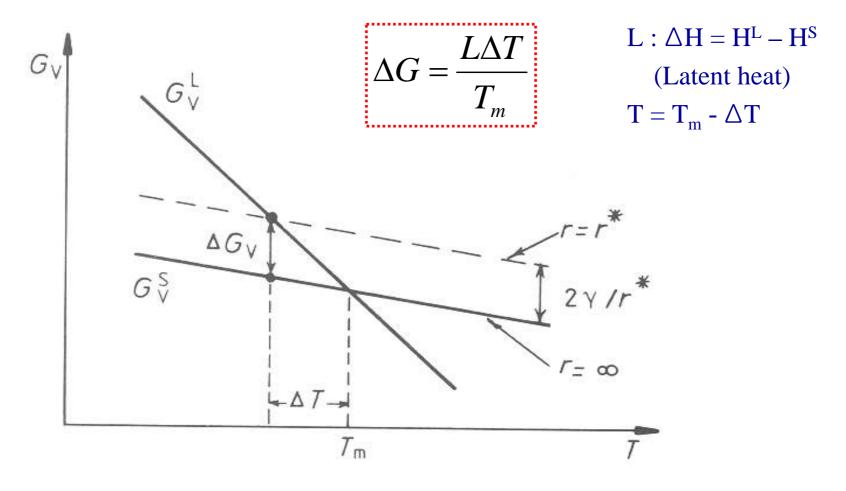
- Heterogeneous nucleation



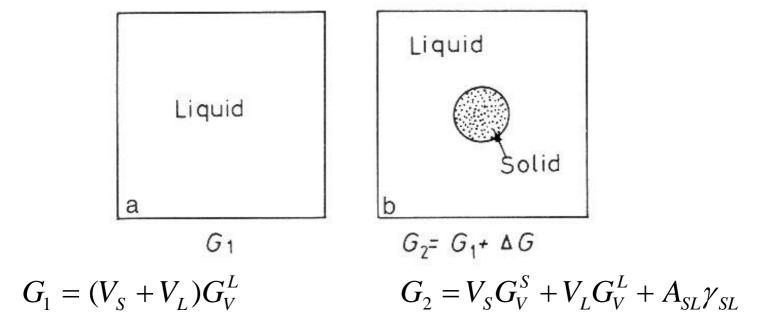
4.1.1. Homogeneous Nucleation

Driving force for solidification (ch.1.2.3)

 $\begin{aligned} G^{L} &= H^{L} - TS^{L} \\ G^{S} &= H^{S} - TS^{S} \end{aligned}$



4.1.1. Homogeneous Nucleation



 G_V^S , G_V^L : free energies per unit volume

$$\Delta G = G_2 - G_1 = -V_S (G_V^L - G_V^S) + A_{SL} \gamma_{SL}$$

for spherical nuclei (isotropic) of radius : r

$$\Delta G_r = -\frac{4}{3} \pi r^3 \Delta G_V + 4\pi r^2 \gamma_{SL}$$

Gibbs-Thompson Equation

 ΔG of a spherical particle of radius, r

 ΔG of a supersaturated solute in liquid in equilibrium with a particle of radius, r

Equil. condition for open system $\longrightarrow \Delta \mu$ should be the same.

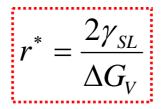
$$\Delta G_{r(s)} = 4\pi r^2 \gamma$$
$$\Delta G_{r(l)} = \frac{4\pi r^3}{3} \times \Delta G_{V}$$

$$\Delta \mu = 8\pi r\gamma = 4\pi r^2 \Delta G_V$$

$$r \rightarrow \frac{2\gamma V_m}{r}$$
/mole or

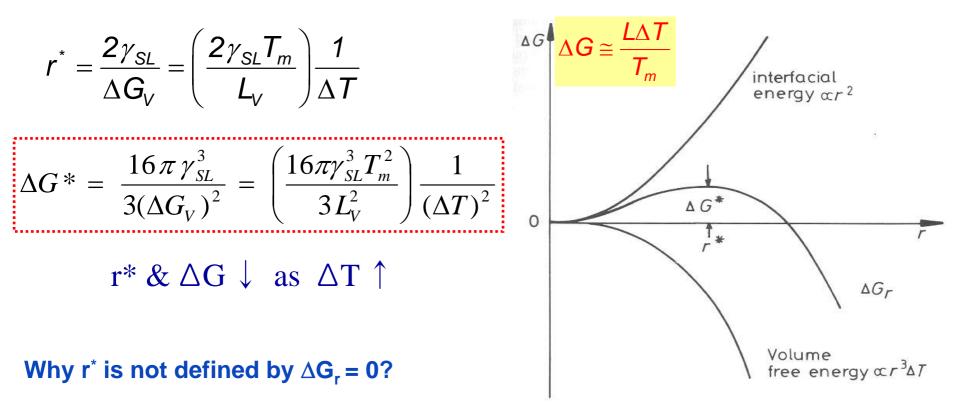
$$\frac{2\gamma}{r}$$
 / per unit volume

$$\Delta G_V = 2\gamma_{SL} / r^*$$



r*: in (unstable) equilibrium with surrounding liquid

4.1.1. Homogeneous Nucleation



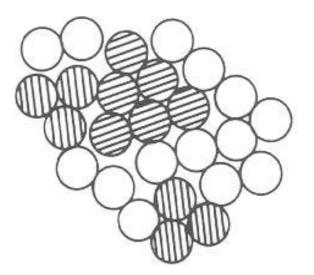
r < r* : unstable (lower free E by reduce size)
r > r* : stable (lower free E by increase size)
r* : critical nucleus size

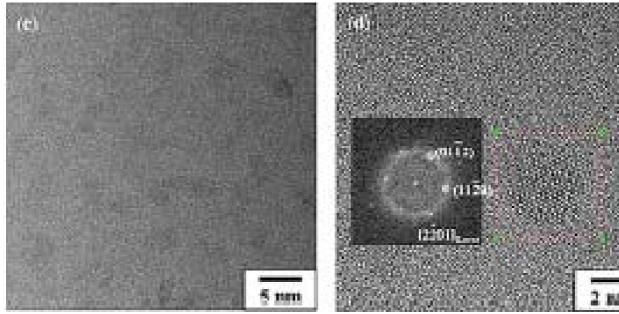
Fig. 4.2 The free energy change associated with homogeneous nucleation of a sphere of radius r.

At the $T_{\rm m}$, the liquid phase has a volume 2-4% greater than the solid.

Fig. 4.4

A two-dimensional representation of an instantaneous picture of the liquid structure. Many close-packed crystal-like clusters (shaded) are instantaneously formed.

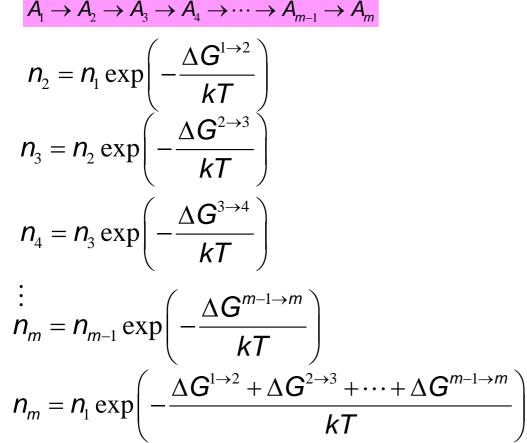


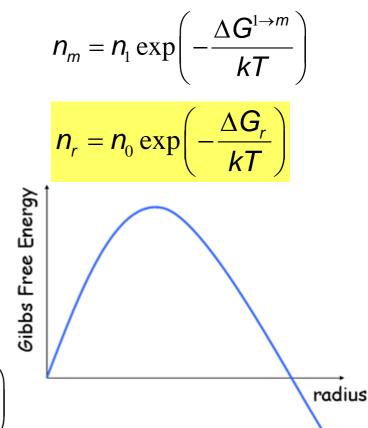


When the free energy of the atomic cluster with radius r is by

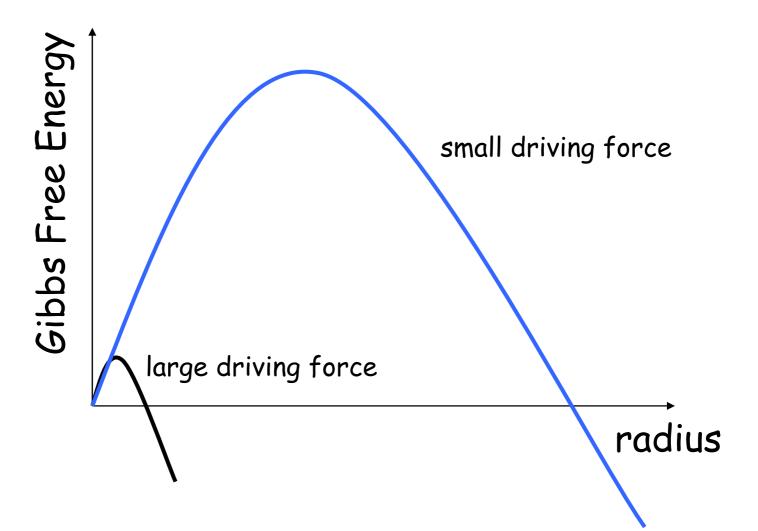
$$\Delta G_r = -\frac{4}{3}\pi r^3 \Delta G_V + 4\pi r^2 \gamma_{SL},$$

how many atomic clusters of radius r would exist in the presence of the total number of atoms, n_0 ?





Compare the nucleation curves between small and large driving forces.



 n_o : total # of atoms.

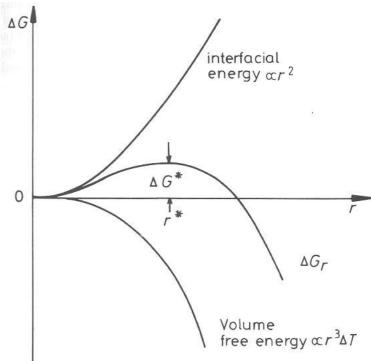
 ΔG_r : excess free energy associated with the cluster

<u># of cluster of radius r</u>

$$n_r = n_0 \exp\left(-\frac{\Delta G_r}{RT}\right)$$

- holds for
$$T > T_m$$
 or $T < T_m$ and $r \le r^*$

- n_r exponentially decreases with ΔG_r



Ex. 1 mm³ of copper at its melting point (no: 10²⁰ atoms)

 $\rightarrow \sim 10^{14}$ clusters of 0.3 nm radius (i.e. ~ 10 atoms)

 \rightarrow ~10 clusters of 0.6 nm radius (i.e. ~ 60 atoms)

→ effectively a maximum cluster size, ~ 100 atoms ~ 10^{-8} clusters mm⁻³ or 1 cluster in ~ 10^7 mm³

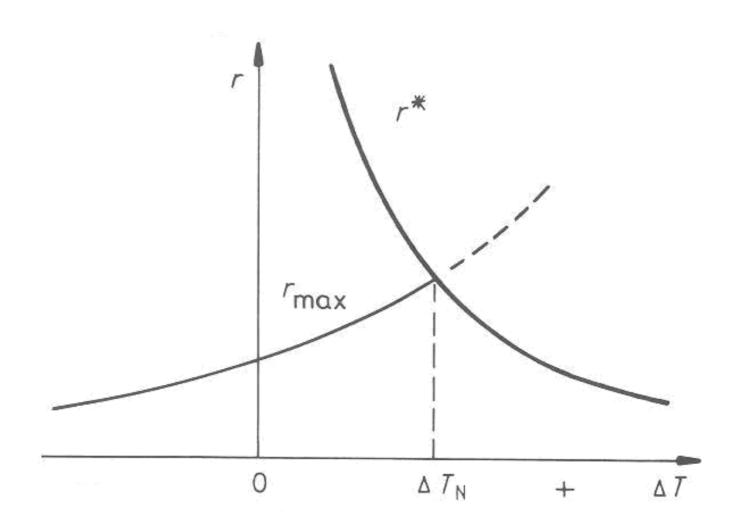


Fig. 4.5 The variation of r* and r_{max} with undercooling ΔT The number of clusters with r* at < ΔT_N is negligible.

4.1.2. The homogeneous nucleation rate - kinetics

How fast solid nuclei will appear in the liquid at a given undercooling?

 C_0 : atoms/unit volume C^* : # of clusters with size of C* (critical size)

$$C^* = C_0 \exp(-rac{\Delta G^*_{
m hom}}{kT})$$
 clusters / m³

The addition of one more atom to each of these clusters will convert them into stable nuclei.

$$N_{\rm hom} = f_0 C_o \exp(-\frac{\Delta G_{\rm hom}^*}{kT})$$
 nuclei / m³•s

 $f_0 \sim 10^{11}$: frequency \propto vibration frequency energy of diffusion in liquid surface area $C_0 \sim 10^{29}$ atoms/m³

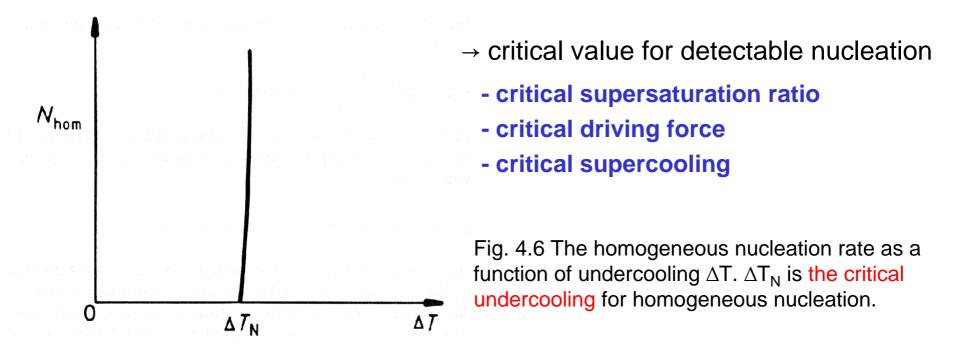
$$\Delta G^* = \left(\frac{16\pi\gamma_{SL}^3 T_m^2}{3L_V^2}\right) \frac{1}{\left(\Delta T\right)^2}$$

4.1.2. The homogeneous nucleation rate - kinetics

$$N_{\text{hom}} \approx f_0 C_o \exp\{-\frac{A}{(\Delta T)^2}\} \quad \text{where} \quad A = \frac{16\pi\gamma_{SL}^3 T_m^2}{3L_V^2 kT}$$

: insensitive to Temp

How do we define ΔT_N ? $N_{\text{hom}} \approx 1 \text{ cm}^{-3} \text{s}^{-1}$ when $\Delta \text{G}^* \sim 78 \text{ kT}$



Real behavior of nucleation

Under suitable conditions, liquid nickel can be undercooled (or supercooled) to 250 K below T_m (1453°C) and held there indefinitely without any transformation occurring.

In the refrigerator, however, water freezes even ~ 1 K below zero. In winter, we observe that water freezes ~ a few degrees below zero.

Why this happens?What is the underlying physics?Which equation should we examine?

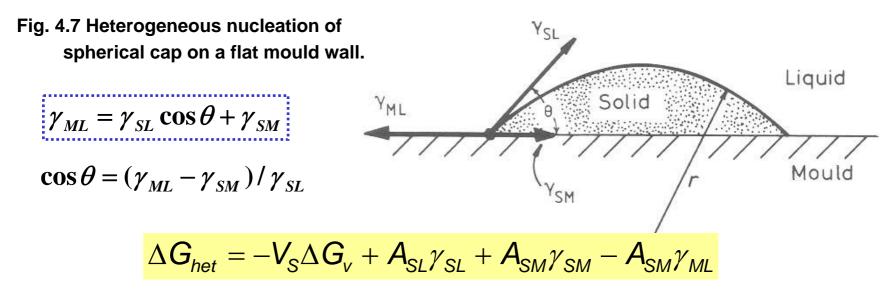
$$\Delta G^* = \frac{16\pi \gamma_{SL}^3}{3(\Delta G_V)^2} = \left(\frac{16\pi \gamma_{SL}^3 T_m^2}{3 L_V^2}\right) \frac{1}{(\Delta T)^2} \qquad N_{\text{hom}} = f_0 C_o \exp(-\frac{\Delta G_{\text{hom}}^*}{kT})$$

Normally undercooling as large as 250 K are not observed. The nucleation of solid at undercooling of only ~ 1 K is common.

4.1.3. Heterogeneous nucleation

From
$$\Delta G^* = \left(\frac{16\pi\gamma_{SL}^3 T_m^2}{3L_V^2}\right) \frac{1}{(\Delta T)^2}$$

Nucleation becomes easy if $\gamma_{SL} \downarrow$ by forming nucleus from mould wall.

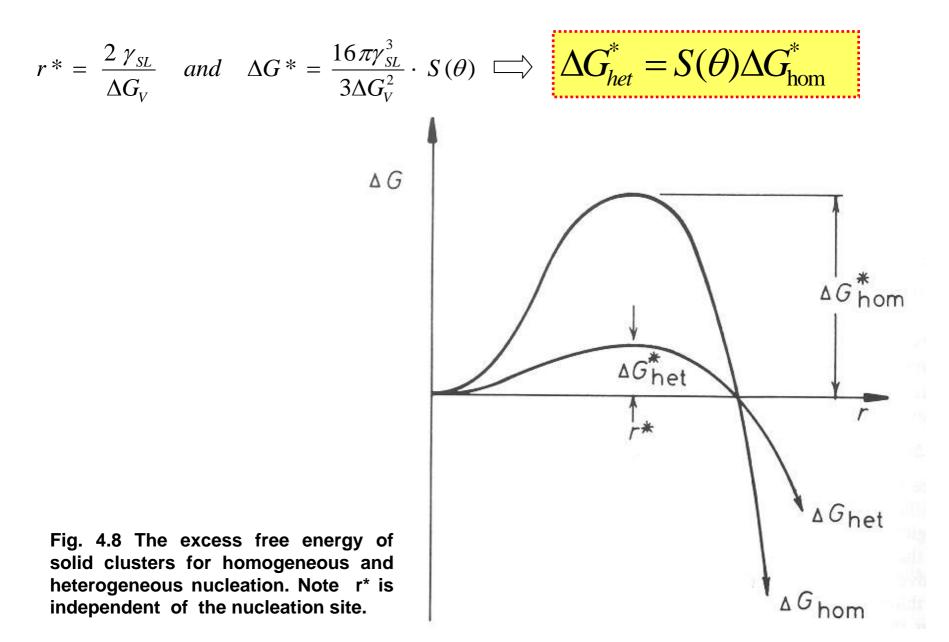


In terms of the wetting angle (θ) and the cap radius (r)

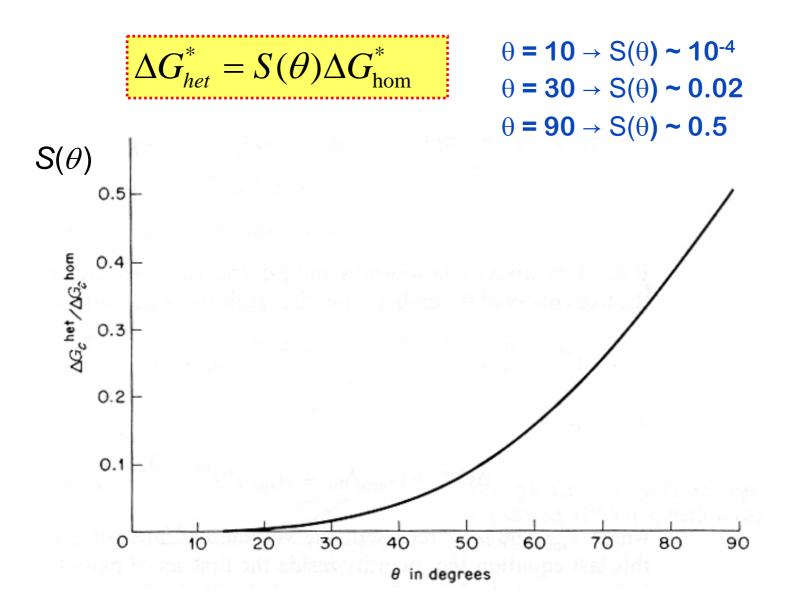
$$\Delta G_{het} = \left\{ -\frac{4}{3} \pi r^3 \Delta G_V + 4 \pi r^2 \gamma_{SL} \right\} S(\theta)$$

where $S(\theta) = (2 + \cos \theta)(1 - \cos \theta)^2 / 4$

S(θ) has a numerical value \leq 1 dependent only on θ (the shape of the nucleus)



4.1.3. Heterogeneous nucleation



The Effect of ΔT on $\Delta G^*_{het} \& \Delta G^*_{hom}$?

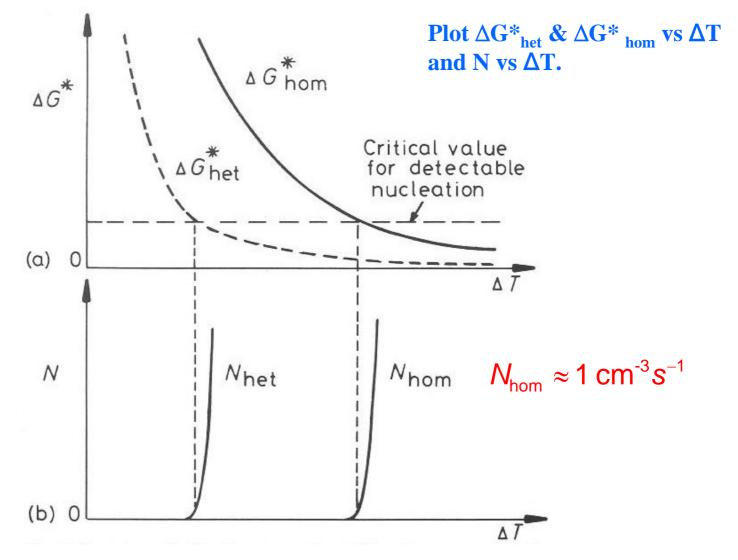
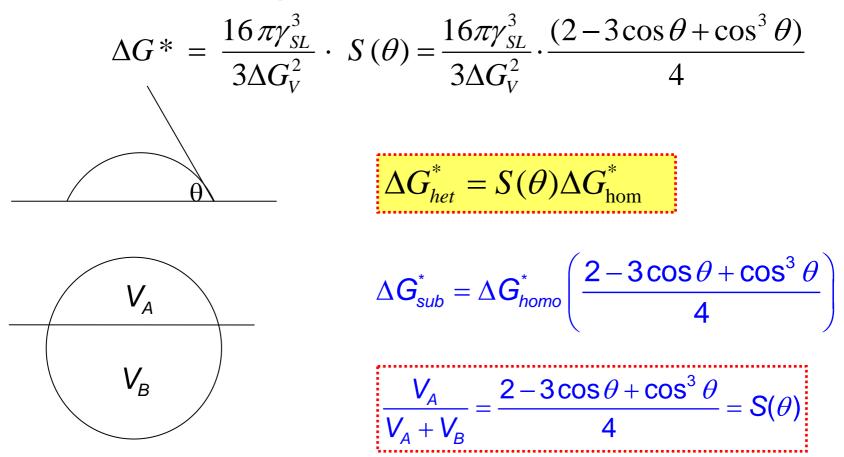


Fig. 4.9 (a) Variation of △G* with undercooling (△T) for homogeneous and heterogeneous nucleation.
 (b) The corresponding nucleation rates assuming the same critical value of △G*

Barrier of Heterogeneous Nucleation

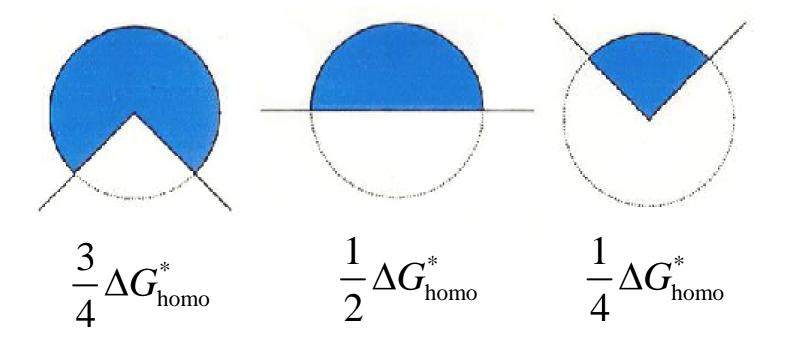


How about the nucleation at the crevice or at the edge?

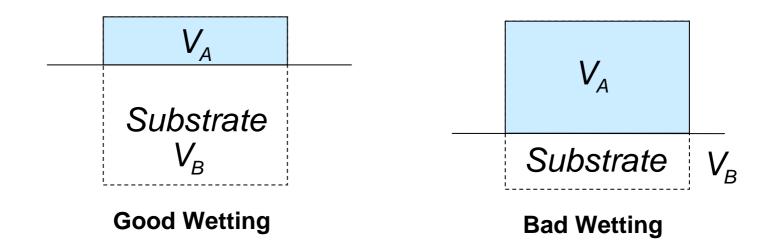
Nucleation Barrier at the crevice

What would be the shape of nucleus and the nucleation barrier for the following conditions?

contact angle = 90 groove angle = 60



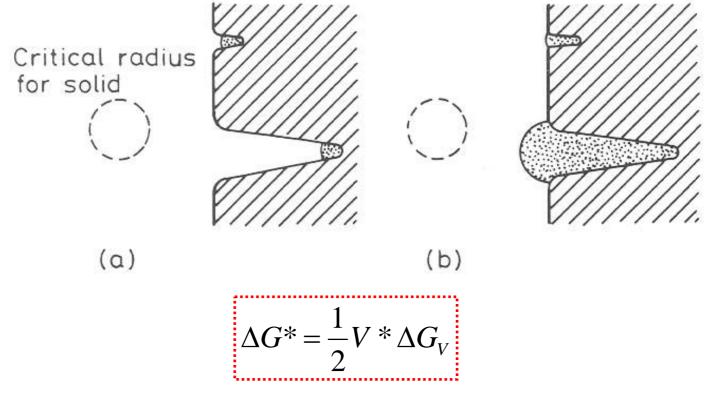
How do we treat the non-spherical shape?



$$\Delta \boldsymbol{G}_{sub}^{*} = \Delta \boldsymbol{G}_{homo}^{*} \left(\frac{\boldsymbol{V}_{A}}{\boldsymbol{V}_{A} + \boldsymbol{V}_{B}} \right)$$

Effect of good and bad wetting on substrate

Nucleation inside the crevice

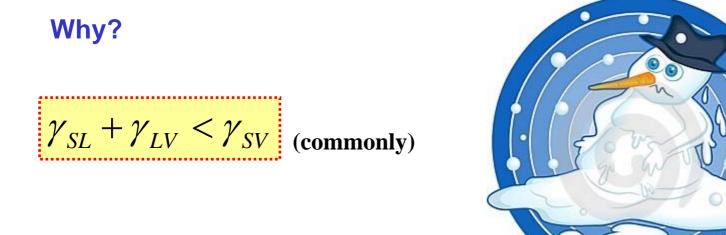


V* : volume of the critical nucleus(cap or sphere)

Wetting angle이 크더라도 nucleation이 가능 할 수 있다. (그러나 crack의 입구는 critical radius 보다 커야 함.)

4.1.4. Nucleation of melting

Although nucleation during solidification usually requires some undercooling, melting invariably occurs at the equilibrium melting temperature even at relatively high rates of heating.



In general, wetting angle = 0