재료상변태

Phase Transformation of Materials

2008. 11. 27.

박 은 수

서울대학교 재료공학

1

Contents for previous class

- < Phase Transformation in Solids >
 - 1) Diffusional Transformation
 - (a) Precipitation

Contents for today's class

Precipitate growth

- Growth behind Planar Incoherent Interfaces
- Diffusion Controlled lengthening of Plates or Needles
- Thickening of Plate-like Precipitates
- Overall Transformation Kinetics TTT Diagram
 - Johnson-Mehl-Avrami Equation
- Precipitation in Age-Hardening Alloys

5.3 Precipitate Growth

석출물 성장 → 계면의 이동 : 석출물 모양 각 계면의 상대적 이동 속도에 의해 좌우됨.

If the nucleus consists of semi-coherent and incoherent interfaces, what would be the growth shape?

 \rightarrow Origin of the Widmanstätten morphology

Incoherent interface \rightarrow similar to rough interface

 \rightarrow local equilibrium \rightarrow diffusion-controlled

Diffusion-Controlled Thickening: 석출물 성장 속도

Fig. 5.14 Diffusion-controlled thickening of a precipitate plate.

 $\rightarrow v = f(\Delta T \text{ or } \Delta X, t)$ From mass conservation,

 $\beta 형성시 용질 증가량$ $(C_{\beta} - C_{e})dx mole of B$ $= J_{B} = D(dC/dx)dt$ B 원소의 총 이동양D: interdiffusion coefficient or interstitial diffusion coeff.

if
$$C_eta - C_{_0} \cong C_eta - C_{_ extsf{e}}$$
 and $X = CV_m$,

Fig. 5.16 The effect of temperature and position on growth rate, v. $_7$

Fig. 5.17 (a) Interference of growing precipitates due to overlapping diffusion fields at later stage of growth. (b) Precipitate has stopped growing.

Fig. 5.18 Grain-boundary diffusion can lead to rapid lengthening and thickening of grain boundary precipitates.

치환형 확산이 필요한 경우 상대적으로 중요

Diffusion Controlled lengthening of Plates or Needles

Needle \rightarrow Gibbs-Thomson increase in G = $2\gamma V_m/r$ instead of $\gamma V_m/r$ \rightarrow the same equation but the different value of r^{*}

Diffusion Controlled lengthening of Plates or Needles

The Gobs-Thomson Effect : 계면에너지로 인해 자유에너지 증가하는 현상

$$\Delta X = \Delta X_0 \left(1 - \frac{r^*}{r} \right)$$

$$\Delta X = X_0 - X_r$$
 $r^*: 임계핵의$
 $\Delta X_0 = X_0 - X_e$ ^{반지름}

Thickening of Plate-like Precipitates

Thickening of Plate-like Precipitates by Ledge Mechanism

Half Thickness Increase

- For the diffusion-controlled growth, a monatomic-height ledge should be supplied constantly.
- sources of monatomic-height ledge
 → spiral growth, 2-D nucleation,
 nucleation at the precipitate edges,
 or from intersections with other
 precipitates (heterogeneous 2-D)

12

 $V = \frac{uh}{\lambda} \qquad \text{u: rate of lateral migration}$ Assuming the diffusion-controlled growth, $V = \frac{D}{C_{\beta} - C_{r}} \cdot \frac{\Delta C}{kr}$ $U = \frac{D\Delta X_{0}}{k(X_{\beta} - X_{e})h}, \quad V = \frac{D\Delta X_{0}}{k(X_{\beta} - X_{e})\lambda}$

Thickening of Plate-like Precipitates

Thickening of γ Plate in the Al-Ag system

Fig. 5.22 The thickening of a g plate in an Al-15 wt% Ag alloy at 400°C. (From C. Laird and H.I. Aaronson, *Acta Metallurgica* 17 (1969) 505.)

The fraction of Transformation as a function of Time and Temperature

→ f(**t**,**T**)

- $\operatorname{Plot} f$ vs log t.
 - isothermal transformation

-*f*~β의 체적분율

Plot the fraction of transformation (1%, 99%) in T-log t coordinate.

Fig. 5.23 The percentage transformation versus time for different transformation temperatures.

Three Transformation Types

(a) continuous nucleation \rightarrow f depends on the nucleation rate and the growth rate.

(b) all nuclei present at t = 0

- \rightarrow f depends on the number of nucleation sites and the growth rate.
- (c) All of the parent phase is consumed by the transformation product.
- \rightarrow pearlite, cellular ppt, massive transformation, recrystallization

Fig. 5.24 (a) Nucleation at a constant rate during the whole transformation. 일정한 속도로 성장, 생성상이 서로 만나 충돌 (b) Site saturation - all nucleation occurs at the beginning of transformation. (c) A cellular transformation.

Johnson-Mehl-Avrami Equation : 변태속도 비교

Assumption:

- reaction produces by N + G
- nucleation occurs randomly throughout specimen
- reaction product grows radially until impingement

define volume fraction transformed $f = \frac{Vol \cdot of \text{ new phase}}{Vol \cdot of \text{ specimen}}$

How much transformation occurred on time interval $\,d\, au$

$$f = \int_0^x d\hat{f} = \frac{4}{3} \pi N v^3 \int_0^t (t - \tau)^3 d\tau$$

 $df = (1 - f) df_{a}$

 $f = \frac{\pi}{3} N v^3 t^4 \rightarrow$ do not consider impingement & repeated nucleation \rightarrow only true for $f \ll 1$

5.5 Precipitation in Age-Hardening Alloys

Precipitation in Aluminum-Copper Alloys

Fig. 5.25 Al-Cu phase diagram showing the metastable GP zone, Θ'' and Θ' solvuses. (Reproduced from G. Lorimer, *Precipitation Processes in Solids*, K.C. Russell and H.I. Aaronson (Eds.), The Metallurgical Society of AMIE, 1978, p. 87.)

5.5.1 GP Zones

 $\Delta G_{\mu}^* > (\Delta G_V - \Delta G_s) >> \Delta G_{zone}^*$

The zones minimize their strain energy by choosing a disc-shape perpendicular to the elastically soft <100> directions in the fcc matrix.

두께: 1~2 개의 원자층, 지름은 대략 25개의 원자 직경거리

Fig. 5.26 Section through a GP zone parallel to the (200) plane. (Based on the work of V. Gerold: *Zeitschrift für Metallkunde* **45** (1954) 599.) : 이러한 응집체는 완전한 석출 입자로 볼 수 없으며, 때때로 석출대 (zone)로 명명함.

GP zones of Al-Cu alloys x 720,000

Fully coherent, about 2 atomic layers thick and 10 nm in diameter with a spacing of ~ 10 nm

Transition phases

Fig. 5.27 A schematic molar free energy diagram for the Al-Cu system.

$\alpha_0 \rightarrow \alpha_1 + \text{GP zone} \rightarrow \alpha_2 + \theta'' \rightarrow \alpha_3 + \theta' \rightarrow \alpha_4 + \theta (\text{CuAl}_2)$

Low Activation Energy of Transition Phases

<u>The Crystal Structures of θ'' , θ' and θ </u>

Fig. 5.29 Structure and morphology of Θ'' , Θ' and Θ in Al-Cu (\bigcirc Al, \bullet Cu).

$\underline{\theta''}$ of Al-Cu alloys x 63,000

Tetragonal unit cell, essentially a distorted fcc in which Cu and AI atoms are ordered on (001) planes, fully-coherent plate-like ppt with $\{001\}_{\alpha}$ habit plane. ~ 10 nm thick and 100 nm in diameter. 24

$\underline{\theta}'$ of AI-Cu alloys x 18,000

 θ' has (001) planes that are identical with $\{001\}_{\alpha}$ and forms as plates on $\{001\}_{\alpha}$ with the same orientation relationship as θ'' . (100), (010) \rightarrow incoherent, ~ 1 µm in diameter.

θ of AI-Cu alloys x 8,000

CuAl₂: complex body centered tetragonal, incoherent or complex semicoherent

Nucleation sites in Al-Cu alloys

Fig. 5.31 Electron micrographs showing nucleation sites in Al-Cu alloys. (a) $\Theta'' \rightarrow \Theta'$. Θ' nucleates at dislocation (X 70,000). (b) Θ nucleation on grain boundary (GB) (X 56,000). (c) $\Theta' \rightarrow \Theta$. Θ nucleates at Θ' /matrix interface (X 70,000). (After P. Haasen, *Physical Metallurgy*, Cambridge University Press, Cambridge, 1978.)

The Effect of Ageing Temperature on the Sequence of Precipitates

Fig. 5.32 (a) Metastable solvus lines in Al-Cu (schematic). (b) Time for start of precipitation at different temperatures for alloy X in (a).

5.5.3. Quenched-in Vacancies

Precipitate-Free Zone(PFZ) due to Vacancy Diffusion during quenching

Fig. 5.35 A PFZ due to vacancy diffusion to a grain boundary during quenching. (a) Vacancy concentration profile. (b) A PFZ in an Al-Ge alloy (x 20 000). (c) Dependence of PFZ width on critical vacancy concentration. X^C

rig. 5.55 A PFZ due to vacancy diffusion to a grain boundary during quenching. (a) Vacancy concentration profile. (b) A PFZ in an Al-Ge alloy (x 20,000). (c) Dependence of PFZ width on critical vacancy concentration X_{ν}^{c} and rate of quenching. [(b) After G. Lorimer in *Precipitation in Solids*, K.C. Russell and H.I. Aaronson (Eds.), The Metallurgical Society of AIME, 1978.]

5.5.3. Quenched-in Vacancies

PFZs can also be induced by the nucleation and growth of grain boundary precipitates during cooling from the solution treatment temperature

Fig. 5.36 PFZs around grain boundaries in a high-strength commercial Al-Zn-Mg-Cu alloy. Precipitates on grain boundaries have extracted solute from surrounding matrix. (x 59,200)

5.5.4. Age Hardening 중간상 형성시 커다란 격자변형 수반하고, 소성 변형시 전위의 이동을 방해함

Hardness vs. Time by Ageing

<u>최대경도 θ"와 θ' 공존할때</u>

Ageing at 130°C produces higher maximum hardness than ageing at 190°C.

At 130°C, however, it takes too a long time.

How can you get the high hardness for the relatively short ageing time?

Double ageing treatment

first below the GP zone solvus \rightarrow fine dispersion of GP zones then ageing at higher T.

미세한 석출물의 분포