
			nly from A.M. Brown and M.F. Ashby, 'Correlations for ts', Acta Metallurgica, 28:1085 (1980).						
	Class	Metal	$\frac{T_{\rm m}}{\rm K}$	$\frac{D_0}{\mathrm{mm}^2~\mathrm{s}^{-1}}$	$\frac{Q}{\text{kJ mol}^{-1}}$	$\frac{Q}{RT_m}$	$\frac{D(T_{\rm m})}{\mu {\rm m}^2 {\rm s}^{-1}}$		
	bcc	e-Pu	914	0.3	65.7	8.7	53		
	(rare earths)	8-Ce	1071	1.2	90.0	10.1	49		
		y-La	1193	1.3	102.6	10.4	42		
		γ-Yb	1796	1.2	121.0	8.1	3600		
	bcc	Rb	312	23	39.4	15.2	5.8		
	(alkali	K	337	31	40.8	14.6	15		
	metals)	Na	371	24.2	43.8	14.2	16		
		Li	454	23	55.3	14.7	9.9		
	bcc	β-T1	577	40	94.6	19.7	0.11		
	(transition	Eu	1095	100	143.5	15.8	14		
	metals)	Er	1795	451	302.4	20.3	0.71		
		a-Fe*	1811	200	239.7	15.9	26		
		δ-Fe*	1811	190	238.5	15.8	26		
		β-Ti	1933	109	251.2	15.6	18		
		B-Zr	2125	134	273.5	15.5	25		
		Cr	2130	20	308.6	17.4	0.54		
		V	2163	28.8	309.2	17.2	0.97		
		Nb	2741	1240	439.6	19.3	5.2		
		Mo	2890	180	460.6	19.2	0.84		
		Ta	3269	124	413.3	15.2	31		
		W	3683	4280	641.0	20.9	3.4		
	hcp*	Cd	594	c 5	76.2	15.4	0.99		
				⊥ c 10	79.9	16.2	0.94		
		Zn	692	c 13	91.6	15.9	1.6		
				⊥c 18	96.2	16.7	0.98		
		Mg	922	c100	134.7	17.6	2.3		
		1		⊥ c150	136.0	17.8	2.9		
	fcc	Pb	601	137	109.1	21.8	0.045		
	0000	Al	933	170	142.0	18.3	1.9		
		Ag	1234	40	184.6	18.0	0.61		
		Au	1336	10.7	176.9	15.9	1.3		_
		Cu	1356	31	200.3	17.8	0.59		
hase Transformations in Metals a		Ni	1726	190	279.7	19.5	0.65	NRL of Charged Nanoparticles	4

2.3.2 Vacancy diffusion

The jumping of atoms into vacant sites can equally well be considered as the jumping of vacancies onto atoms sites. A vacancy is always surrounded by sites to which it can jump like interstitials.

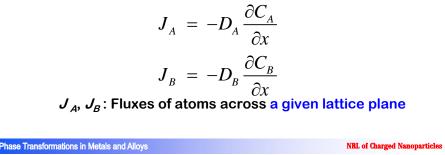
$$D_{V} = \frac{1}{6}\alpha^{2}\Gamma_{V} = \frac{1}{6}\alpha^{2}zV\exp\frac{\Delta S_{m}}{R}\exp\frac{-\Delta H_{m}}{RT}$$

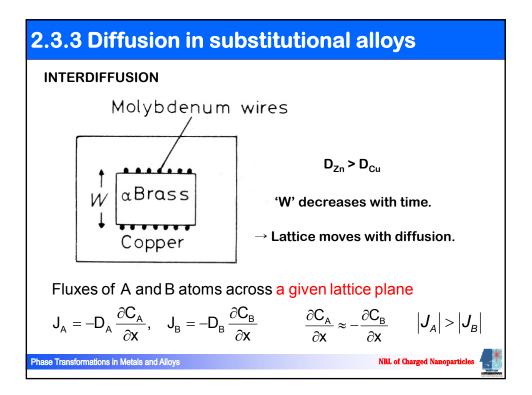
Which is larger, D_v or D_A ?

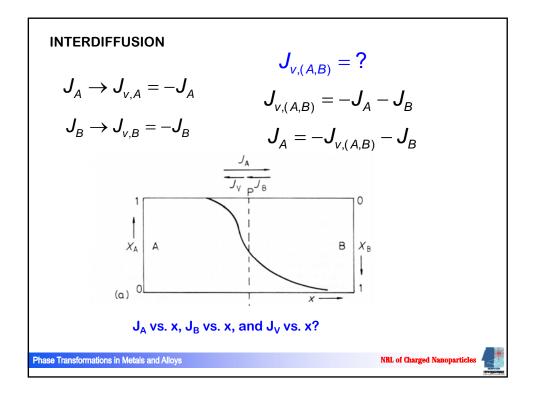
How much larger?

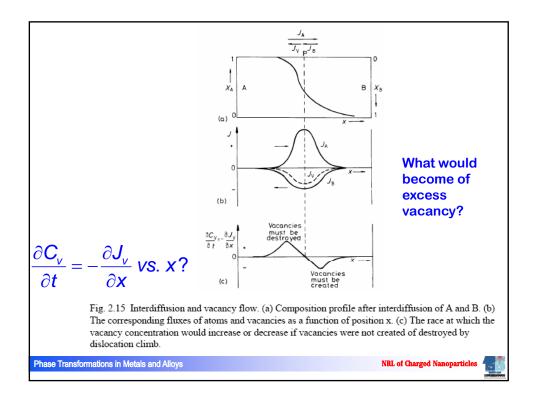
NRL of Charged Nanoparticles

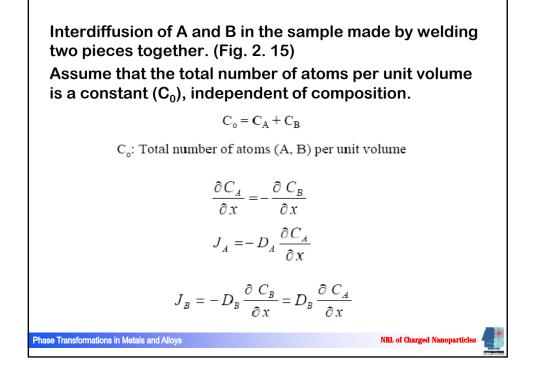
$$D_V = D_A / X_V^e$$


This shows in fact that the diffusivity of vacancy (D_v) is many orders of magnitude greater than the diffusivity of substitutional atoms (D_A) .


Phase Transformations in Metals and Alloys


2.3.3 Diffusion in substitutional alloys


The rate at which solvent (A) and solute (B) atoms can move into a vacancy is not equal, and each atomic species must be given its own 'intrinsic' diffusion coefficient D_A and D_B .


Fick's 1st law relative to the lattice:

