
Chap.5 Flow of an Incompressible 
Ideal Fluid 

 

• Ideal fluid (or inviscid fluid) → viscosity=0 

→ no friction b/w fluid particles 

   or b/w fluid and boundary walls 

• Incompressible fluid → ρ=const, 0/ =dtdρ  

 

5.1  Euler’s Equation (1-D steady flow) 
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Newton’s 2nd law: maF =  
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5.2  Bernoulli’s Equation with Energy and 
Hydraulic Grade Lines 

 

For 1-D steady flow of incompressible and 

uniform density fluid, integration of the Euler 

equation gives the Bernoulli equation as follows: 
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Assumption: The stream tube is infinitesimally 

thin, so that it can be assumed to be a streamline. 
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5.3  1-D Assumption for Streamtubes of 
Finite Cross Section 

 

Assumptions: 

1. Streamlines are straight and parallel. 
2. constant=V  across a cross section 

(ideal fluid → no friction) 

 

Straight and parallel streamlines 

→ No cross-sectional velocity 

→ No cross-sectional acceleration 

 

 



Newton’s 2nd law in x-sectional direction: 

0forcebody force pressure =+=cF   

        (Q no x-sectional acceleration) 
 
         Read text 
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or constant=+ zp
γ

 across the x-section 

Ex) Ideal fluid flowing in a pipe (IP 5.1) 
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  ( CB VV =Q ) 

Therefore, the Bernoulli’s equation can be 

applied not only between A and B (on the same 

streamline) but also between A and C (on 

different streamlines) in the pipe shown below. 

 



5.4  Applications of Bernoulli’s Equation 

(1) If const≈z , const
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    ∴ high velocity → low pressure 

(2) Torricelli’s equation 

 

Bernoulli equation b/w 1 and 2: 
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Using 21 zz = , hp γ=1 , 02 =p , 01 ≈V , 
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For application of Torricelli’s equation, see IP 

5.2 in text. 
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In the reservoir ( 0=V ), 
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(3) Cavitation 

Cavitation occurs if vpppp ≤+= atmgageabs  

                 or )( atmgage vppp −−≤  

At initiation of cavitation,  

)( atmgage vppp −−=  

 

cp (critical gage pressure in text p. 134) 
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(4) Pitot tube (for measuring velocity) 
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         can be measured 

         ∴ OV  can be known. 



(5) Overflow structure (e.g. spillway of a dam) 

 
Pressure and velocity on the spillway surface at 2? 
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Bernoulli equation at points s  and b : 
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Bernoulli equation at water surfaces at 1 and 2 
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2 equations for 2 unknowns ( 1y  and 1V ) 

→ can be solved for 1y  and 1V . 

 

See also § 5.3 

const/ =+ zp γ  

across a x-section 



5.5  Work-Energy Equation 

• Addition or extraction of energy by flow machines 

- pump: add energy to flow system 
           (or a pump does work on fluid) 

- turbine: extract energy from flow system 
             (or fluid does work on a turbine) 

• Mechanical work-energy principle 

Work done on a fluid system is equal to the change 
in the mechanical energy (potential + kinetic energy) 
of the system 

dt
dE

dt
dWdEdW =→=  

Note: Work, energy, and heat have the same unit (J=N⋅m) 

• Control volume analysis (Reynolds transport theorem) 

 

 



Reynolds transport theorem for mechanical energy: 
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1. flow work rate done by pressure force 
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2. machine work rate done by pumps or turbines 

( )tp EEQ −= γ  

=tp EE ,  work rate per unit weight of fluid 

3. Shear work rate done by shearing forces on the 

control surface = 0 (Q ideal fluid) 
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Work-energy equation (per unit weight of fluid) 

 

• Power of pump or turbine 

Power = rate of work done 

=tp EE ,  rate of work done per unit weight of fluid 

∴ Power of pump or turbine 

     ( ) γQEE tp ×= or  (ft⋅lb/s or J/s=W) 

                     total weight of fluid passing the 

                     x-section per unit time 



5.6 Euler’s Equations (2-D Steady Flow) 

 

Newton’s 2nd law: 

x-direction: 
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z-direction: 
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3 equations for 3 unknowns ),,( wup  



5.7 Bernoulli’s Equation 

Euler’s equations: 
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Let ),( 111 zxX =  and ),( 222 zxX = . 

Integrating from 1X  to 2X , 
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If the path between 1X  and 2X  is a streamline 

( dtdxu /= , dtdzw /= ), the RHS vanishes so that 
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Therefore, 
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 along a streamline. 

But, in general, the constant(C ) may be different for 

different streamlines. 

On the other hand, for an irrotational flow, 0=ξ , thus 
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for any two points in the flow. Thus 
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over the whole flow field for irrotational flow. 



5.8 Applications of Bernoulli’s Equation 

For irrotational flow of ideal incompressible fluid, the 

Bernoulli’s equation applies over the whole flow field 

with a single energy line. 

 

z
g

VpH ++=
2

2

γ
 

We are interested in p  and V  at a point. 

Exact velocity field → Exact pressure 

            Difficult to solve 

            Semi-quantitative (approximate) approach 

 



(1) Tornado or bathtub vortex: Higher pressure and 

lower velocity outwards from the center (Read text) 

 

(2) Flow in a curved section in a vertical plane (Fig. 

5.12) 

 

- gravity effect >> centrifugal force (low velocity) 

- outer wall: sparse streamlines → lower velocity 

→ higher pressure 

- inner wall: dense streamlines → higher velocity 

→ lower pressure 

 



(3) Flow in a convergent-divergent section 

 

At section 2:  

Center: sparse streamlines → lower velocity 

→ higher pressure 

Wall: dense streamlines → higher velocity 

 → lower pressure 
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UL zz <  → LU pp <  

If cavitation occurs, it will occur first at the upper wall. 



(4) Stagnation points 

Sharp corner of a surface → 0=V  (stagnation point) 

At stagnation point, EL = HGL ( 0=VQ ) 

 

 

 



(5) Sharp-crested weir 

 

At upstream side, pressure is hydrostatic. 
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Pressure distribution above the weir: 

Near free streamlines: dense streamlines 

                      → higher velocity 

→ lower pressure 

Near center: sparse streamlines → lower velocity 

         → higher pressure 

Note: 0=p  along free streamlines 



(6) Flow past a circular cylinder 
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At windward stagnation point: 

0=→= rvRr ,  0=→= tvπθ  
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(7) Flow through an orifice 

 

Streamlines are straight and parallel in the vena 

contracta. 0=p  everywhere in the jet, but v  varies 

across the jet (Read page 131). 



5.9 Stream Function and Velocity Potential 

• Bernoulli equation → Relationship b/w p , V  and z  

• z  is known. Therefore, if V ( u  and v ) can be 

calculated, then p  can be calculated by the Bernoulli 

equation. 

• Introduce stream function (ψ ) and velocity potential (φ ), 

which are related to the velocity field (u  and v ). 

• PDE for ),( yxψ  or ),( yxφ  + boundary conditions → 

solve for ψ  or φ  → u  and v  → p  

(1) Stream function 

 
• ψ  = flowrate b/w 0 and a streamline 

• Flowrate ψ  b/w 0 and any point on streamline A is the 

same (Q no flow across a streamline) → ψ  = const on 

streamline A 

• Flowrate b/w 0 and streamline ψψ dB +=  → 

)( dqd =ψ  = flowrate b/w streamlines A and B  
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∴ ψ  (stream function) satisfies continuity equation for 

incompressible fluid. 

For irrotational flow, 0=
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(2) Velocity potential 

Define the velocity potential, ),( yxφ , so as to satisfy 
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 ← Laplace equation for ),( yxφ  

Vorticity: 
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∴ φ  (velocity potential) is defined only in the 

irrotational flow. 

 

Note: 

1. irrotational flow = potential flow 

(Q velocity potential exists in irrotational flow) 

2. ψ  satisfies continuity for incompressible fluid 

   → For irrotational flow, 02 =∇ ψ  

3. φ  satisfies irrotationality 

   → For incompressible fluid, 02 =∇ φ  



(3) Relationship between φ  and ψ  
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Streamlines ( ψ =const) and equipotential lines 

(φ =const) are orthogonal (Read text p. 167-168). 

 
 

Cauchy-Riemann 

Conditions 


