Chap.b Flow of an Incompressible
Ideal Fluid

e [deal fluid (or inviscid fluid) — viscosity=0
— no friction b/w fluid particles
or b/w fluid and boundary walls

e Incompressible fluid - p=const, dp/dt=0

5.1 Euler’s Equation (1-D steady flow)

v+dV

- pressure force: pdA—(p-+dp)dA=—dpdA

- body force: —pgdsdA(%j = —pgdAdz
dv. oV oV dVv
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- acceleration: a=




Newton’s 2nd law: F =ma

— dpdA - pgdAdz = pdAdsV (jj—\g
d_p+ gdz+VdV =0 k- 1-D Euler’s equation
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5.2 Bernoulli’s Equation with Energy and
Hydraulic Grade Lines

For 1-D steady flow of incompressible and
uniform density fluid, integration of the Euler
equation gives the Bernoulli equation as follows:
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Assumption: The stream tube is infinitesimally
thin, so that it can be assumed to be a streamline.
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5.3 1-D Assumption for Streamtubes of
Finite Cross Section

Assumptions:

1. Streamlines are straight and parallel.
2.V =constant across a cross section
(ideal fluid — no friction)
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Straight and parallel streamlines
— No cross—sectional velocity

— No cross—sectional acceleration



Newton’s 2nd law in x—sectional direction:

F. = pressure force + body force = 0

(. no x—sectional acceleration)

Read text
Py Py
Y Y

or B+ Z =constant across the x—section

Y
Ex) Ideal fluid flowing in a pipe (IP 5.1)
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Payy VA _Ps Z, +Y8  (.-same streamline)
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Therefore, the Bernoulli’s equation can be
applied not only between A and B (on the same
streamline) but also between A and C (on
different streamlines) in the pipe shown below.




5.4 Applications of Bernoulli’s Equation

2
(1) If z=const, E+V— ~ const
y 29
-. high velocity — low pressure

(2) Torricelli’s equation

_ HGL for central
: F 3 P streamline o7
N

Bernoulli equation b/w 1 and 2:
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Using 7, =2,, p,=/h, p,=0, V, =0,

h=—= — |V, =,2gh |« Torricelli equation

For application of Torricelli’s equation, see [P
5.2 1n text.



Note:

In the reservoir (V =0), ~0
Water surface = EL (= E+/VZ/+ Z)
R y 729
= HGL (= P +2)
Y
= const. 1in static fluid
(reservoir)
=Z | e (- P =0at surface)

(3) Cavitation

Cavitation occurs if P = Pgage + Pam < Py
O Pyage < —(Pam = P,)

At 1nitiation of cavitation,

pgage — _( Patm — pv)

|

p.(critical gage pressure in text p. 134)



(4) Pitot tube (for measuring velocity)

HGL for streamline O.’Qa\ [
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can be measured

.. Vg can be known.



(5) Overflow structure (e.g. spillway of a dam)
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Pressure and velocity on the spillway surface at 2?
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2V, =V, =V, (. ideal fluid)
Bernoulli equation at points S and b:

&+_+Z _&+_+Zb &« See also§5.3
7 29 y 29 p/y+z=const
= 7/(2S — Zb) across a x—section

Continuity: V,y, =V, Y,
Bernoulli equation at water surfaces at 1 and 2

&+—+y1 &+—+z
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2 equations for 2 unknowns (y, and V,)
— can be solved for Yy, and V.



5.5 Work-Energy Equation

e Addition or extraction of energy by flow machines

- pump: add energy to flow system
(or a pump does work on fluid)
- turbine: extract energy from flow system
(or fluid does work on a turbine)

e Mechanical work—energy principle

Work done on a fluid system i1s equal to the change
in the mechanical energy (potential + kinetic energy)
of the system

dw  dE

dW = dE o=
dt  dt

Note: Work, energy, and heat have the same unit (J=N-m)

e Control volume analysis (Reynolds transport theorem)

turbine

Contref 2,

pump Wwlume

adlatum 3




Reynolds transport theorem for mechanical energy:
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dw
Rate of work done on the flow system [E = ?j

1. flow work rate done by pressure force

= ”B -VdA = PAV, — P,AV, = Q?{ﬂ — &j
Cs Yo

2. machine work rate done by pumps or turbines
= Qy(Ep - Et)
E,, E, = work rate per unit weight of fluid

3. Shear work rate done by shearing forces on the
control surface = 0 (*. ideal fluid)
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dw dE

Since —=——, we get
dt dt’
2 2
pl+z +V—+E —E, = &+z +V—
y 29 y 29

Work-energy equation (per unit weight of fluid)
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e Power of pump or turbine

Power = rate of work done

E,, E, = rate of work done per unit weight of fluid

. Power of pump or turbine
= (Ep or E )xQy (ft-Ib/s or J/s=W)

total weight of fluid passing the
X—section per unit time



5.6 Euler’s Equations (2-D Steady Flow)
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Newton’s 2nd law:

X —direction:
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Z —direction:
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Continuity: —+—=0
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3 equations for 3 unknowns (p, U, w)
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5.7 Bernoulli’s Equation

Euler’s equations:
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Let X, =(X,2) and X, =(X,,Z,).
Integrating from X; to X,,

( p o uZ+w j
-+ +1

y 29

If the path between X, and X, is a streamline

(u=dx/dt, w=dz/dt), the RHS vanishes so that

X2

1 ¢x
= ajxl E(wdx —udz)

X1

X2

2 | 2
(B LW zj =0
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Therefore,
2 | .2
P + u 2+W +z =const(C) along a streamline.
4 g

But, in general, the constant(C) may be different for
different streamlines.

On the other hand, for an irrotational flow, & =0, thus

(p u® +w? j
—+ +Z
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for any two points in the flow. Thus

2
B+V—+z: H (const)
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over the whole flow field for irrotational flow.

X2

=0

X1



5.8 Applications of Bernoulli’s Equation

For irrotational flow of ideal incompressible fluid, the
Bernoulli’s equation applies over the whole flow field

with a single energy line.
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We are interested in p and V at a point.

Exact velocity field - Exact pressure

— Difficult to solve

|

Semi—quantitative (approximate) approach



(1) Tornado or bathtub vortex: Higher pressure and
lower velocity outwards from the center (Read text)

(2) Flow in a curved section in a vertical plane (Fig.
5.12)

::I: Fr:
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For outer wall ~
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For inner wall
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Inner wall ”

- gravity effect >> centrifugal force (low velocity)

- outer wall: sparse streamlines — lower velocity
— higher pressure

- 1nner wall: dense streamlines — higher velocity
— lower pressure



(3) Flow in a convergent—divergent section

- - A EL

HGL

At section 2:

Center: sparse streamlines — lower velocity
— higher pressure
Wall: dense streamlines — higher velocity
— lower pressure

2 2
&-FZU +V—U:ﬂ+zL+V—L
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Vy =V, - &+zu :ﬂ-l-zl_
/4 /4

Z <Zy = Py <P

If cavitation occurs, 1t will occur first at the upper wall.



(4) Stagnation points
Sharp corner of a surface » V =0 (stagnation point)

At stagnation point, EL = HGL (' 'V =0)

Fig. 5.5



(5) Sharp-crested weir

B

L"— B —"i

Fig. 5.15
At upstream side, pressure is hydrostatic.
Pa =W

. &
At point A" (stagnation point), Par _ y +5
/4

Pressure distribution above the weir:

Near free streamlines: dense streamlines
— higher velocity
— lower pressure
Near center: sparse streamlines — lower velocity
— higher pressure
Note: p=0 along free streamlines



(6) Flow past a circular cylinder

]

Horiz. datum plane ¥

2 2
V, :Uil—%jcosé?, v, =-U (1+ %jsiné?

At windward stagnation point:
r=R—-v, =0, 0=7n—->v,=0

At leeward stagnation point:
r=R—->v. =0, 6=0->v,=0

At surface of the cylinder (r =R):
v, =0, v,=-2Usind

2 o1 [ cin O)2
&+U_+20:£+2+( 2U sin )
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E+z = fn(p,,z,,U,0)
Y




(7) Flow through an orifice
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Vena

-L\ e
&\\K contracta
\“‘-. > e . 1.
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=~ 4 A
Pressure _ fe—> e
distribution ;

Streamlines are straight and parallel in the vena
contracta. p=0 everywhere in the jet, but vV varies
across the jet (Read page 131).



5.9 Stream Function and Velocity Potential

e Bernoulli equation — Relationship b/w p, V and Z

e Z is known. Therefore, if V (U and V) can be
calculated, then P can be calculated by the Bernoulli
equation.

e Introduce stream function () and velocity potential (@),
which are related to the velocity field (U and V).

e PDE for w(X,y) or #(X,y) + boundary conditions —

solve for ¥ or @ - U and V — P

(1) Stream function

U

A M dy

dx

o v = flowrate b/w O and a streamline

e Flowrate ¥ b/w O and any point on streamline A is the
same (*.* no flow across a streamline) —» ¥ = const on
streamline A

e Flowrate b/w 0 and streamline B = w+dy -
dw(=dg) = flowrate b/w streamlines A and B
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. ¥ (stream function) satisfies continuity equation for

Now

incompressible fluid.

For irrotational flow, & = @ _8_u =
OX oY
2
or 8;” 52§V = VZW =0 <« Laplace equation for w(X,Y)
o°X 0%y

w(X,Y) can be solved with proper boundary conditions.



(2) Velocity potential

Define the velocity potential, ¢(X,Y), so as to satisfy

o ,_ o
oX oy
Plug in continuity equation:
2 2
o T
oX oy ox~ oy
o ¢ 0’ =V?¢ =0 « Laplace equation for @(X,Y)
OX* 8y
Vorticity:
2
&= @_6_u 9 09 =0 — irrotational flow

oX oYy axay OyOX

. ¢ (velocity potential) is defined only in the
irrotational flow.

Note:

1. irrotational flow = potential flow
(- velocity potential exists in irrotational flow)
2.  satisfies continuity for incompressible fluid
— For irrotational flow, V=0
3. @ satisfies irrotationality
— For incompressible fluid, V?¢ =0



(3) Relationship between ¢ and y

oy o ow
OX oy OX oy | Cauchy-Riemann
_ _8¢ _ _aW N % _ a_W Conditions
oy OX oy OX |

Streamlines ( w =const) and equipotential lines
(¢=const) are orthogonal (Read text p. 167-168).

e, potential Limes
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