Ch 4. Shear Flow Dispersion

4. Chapter Shear Flow Dispersion

@ Taylor’ Analysis of Dispersion (1953, 1954)
- laminar flow in pipe
- turbulent flow
— apply Fickian model to dispersion
— reasonably accurate estimate of the rate of longitudinal dispersion in rivers

and estuaries

@ Dispersion = spreading of a cloud of contaminants by the combined effects

of shear flow and transverse diffusion

Shear flow = flows with velocity gradients

4.1 Dispersion in Laminar Shear Flow
4.1.1 Introductory Remarks

@ Taylor's analysis (1953) in laminar flow in pipe

r

i, 0, S, a0, S, St . 1 .-G ", . O, . ., A Wl W b, . U O S W W

PO {

AXTARAARTHTLTERRARRTTTRTTTETFI TR TTYTTTYTRR

<Fig. 4.1> The parabolic velocity distribution in laminar pipe flow
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Ch 4. Shear Flow Dispersion

1) rate of separation caused by the difference in advective velocity

> separation by molecular motion

2) given enough time, any single molecular wander randomly throughout the

cross section of the pipe because of molecular diffusion

3) velocity of any single molecule is equal to velocity of the stream line on

which it is located, a function of cross-sectional position,

(4) because of molecular diffusion each molecule moves at random walk back

and forth across the cross section.

— motion of single molecule is the sum of a series of independent steps of

random length.

(5) Fickian diffusion equation can describe the spread of particles along the axis

of the pipes, except that since the step length and time increment are much
different from those of molecular diffusion we expect to find a different value

of different value of diffusion coefficient.
- turbulent diffusion coefficient &=<U’>T,

where U = velocity deviation

T, = Lagrangian time scale

For laminar flow in pipe; <U?’>ccu,’
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Ch 4. Shear Flow Dispersion

where U,= maximum velocity at the centerline of pipe
a = radius of pipe
D = molecular diffusion coefficient

- longitudinal dispersion coefficient

a2

4.1.2 A Generalized Introduction
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(a) example velocity distribution (b) transformed coordinate system

moving at the mean velocity

@ 2-D laminar flow

* cross-sectional mean velocity
.
u= " IO udy
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Ch 4. Shear Flow Dispersion

Velocity deviation: U =u(y)-T

Let flow carry a solute with concentration C(X, y) and molecular diffusion

coefficient D
on: C=~["Cdy, C=f()=t
mean concentration: C = - IO Y, =f(x)= f(y)

concentration deviation: C =C ( y) —~C, C'=C'(x,y)

@ 2-D diffusion equation with only flow in x-direction (v =0)

oC oC oC 0°C N 0°C
ot ox oy ox’ oy’

O B I T LI
a(C+c)+(u +u)&(C+C)_D{axz(C+C)+ay2(C+C)} (a)

@ transformation of coordinate system whose origin moves at the mean flow

velocity
OX ot
=t 5 %9 T_
OX ot
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Ch 4. Shear Flow Dispersion

Chain rule
9 98 0rd o ®)
OX  OXOE OXxOr OF
0 050 6r0 _0 0
e ©

ot otoE otor  of or

Substitute Eq. (b)-(¢) into Eq. (a)

R R o R > ..o
_u%(C+C)+E(C+C)+(u+u)%(C+C)_D{a§2(C+C)+ 8y2}
va gl " a — U 82 —~ ' azc'
u%(C+C)+5(C+C)—D{a§2(C+C)+ 8y2}

€ Now, neglect longitudinal diffusion because rate of spreading along the flow

direction due to velocity difference greatly exceed that due to molecular

diffusion.
0° = . 0 = \
D—(C+C)<<u'—(C+C)
o0& 0g
_ , _ , -~
'.5C+8C +u.5C+u,8C —DaS (4.3)

T or ot o8& O oy

€ Now introduce Taylor's assumption
— discard three terms

_ .-
o€ _0C (4.4)
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Ch 4. Shear Flow Dispersion

@ Dcrivation of Eq. (4.4) using orders of magnitude analysis

Take average over the cross section of Eq. (4.3)

(apply the operator %J‘Oh( )dy )

oC oC .oC  .oC 0°C
+ +U +U =
or Ot ol o¢ oy’

Apply Reynolds rule of average
oC .oC
+U =

Fralb et (4.5)

Subtract Eq.(4.5) from Eq.(4.3)

oc’ .oC .oC .oC o0°C
+U +U =

Then u— u'ﬁ,ug
o 0¢
Thus we can drop U —, o
05

':D v—u' C (a)
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Ch 4. Shear Flow Dispersion

.oC :
—u ks = source term of variable strength

— net addition by source term is zero because the average of U is zero

oC : : :
Assume thata— remains constant for a long time, so that the source is constant.

Then Eq. (a) can be assumed as steady state

L €
or
Then
_ -
U oC D 0°C
o0& oy’
A (B)

— cross sectional concentration profile C'(y)is established by a balance

between longitudinal advective transport (A) and cross sectional diffusive

transport (B)

Ty
| _ngc 8 (_pdcC
D&dx + 3y ( Day)cydx

L7

L)
|
4
ADVECTIVE TRANSPORT | 4 3
uCdy o il vy uCdy + 37— (uCldxdy

T .
| DIFFUSIVE TRANSPORT —D-g-%dx
i

|

i

|

{
.—.{d‘k_

X

<Fig. 4.3> The balance of advective flux versus diffusive flux
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Ch 4. Shear Flow Dispersion

In balance, net transport = 0

u'Cdy — {quy+i(uC)dxdy}+ —ng - —Dﬁd 0 D£ dydx
OX oy oy oyl oy

0, — o _oC
=——(uC)dxdy + —| D— |dydx =0
ax( ) d W[ 5YJ g

o405

@ Solution of Eq. (4.4)

°C 1aC . 1oC
=——u=—-—1U
o> Do D ox

Integrate twice w.r.t. y

C'= D@x” u'dydy +C'(0) (4.6)

Consider mass transport in the streamwise direction

ot (5

M = J uC'dy 18Cj Ijudydydy 4.7)
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Ch 4. Shear Flow Dispersion

Johu'{C'(O)} dy=0

— Total mass transport in the streamwise direction is proportional to the

concentration gradient in that direction.

M o &
OX
. cop oC
- similar to molecular diffusion (q= —Da—)
X

- but this is diffusion due to whole field of flow

q =rate of mass transport per unit area per unit time

M oC
= =-K— b
q hx1 OX ®)
where h = depth = area per unit width of flow
K = longitudinal dispersion coefficient (= bulk transport

coefficient) — express as the diffusive property of the velocity

distribution (shear flow)
Then, (b) becomes
oC

M =—hK —=
OX

Compare Eq. (4.7) and Eq. (4.8)
I ¢hopyey
K==yl [ udvdvdy

Koci
D

(4.8)
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Ch 4. Shear Flow Dispersion

Now, we can express this transport process due to velocity distribution as a one-

dimensional Fickian-type diffusion equation in moving coordinate system.

_ -
or  OF

(4.10)

return to fixed coordinate system

_ _ =
%?+UZC:KZS (4.11)
X X

— 1-D advection-dispersion equation

C, U=cross-sectional average values

@ Balance of advection and diffusion in Eq. (4.4) [Chatwin, 1970]

2
i) Initial period: t< O.4hB

- advection > diffusion

- skewed longitudinal concentration distribution (Fig. 4.4(c))

.. . h2
i) Taylor period: t> 0.45

- advection = diffusion

- variance of dispersing cloud oct

o’ = 2Kt
2

oo _oK

ot

- initial skew degenerates into normal distribution
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Ch 4. Shear Flow Dispersion

- longitudinal spreading follows Eq. (4.11)
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Ch 4. Shear Flow Dispersion

4.1.3 A Simple Example

@ laminar flow between two plates — Couette flow

4y

—_— -U/2 use —_—
L&\\\\x\l\\\\\\\\\}\\\\‘\\\\\

v
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AREEREIE TR T U S W U W N N v e e
. -0.05 0.05 -

cosnty 2%

Fig. 4.5 Velocity profile and the resulting concentration profile

_ut
u(y)=U-

Ly
=—|2U=dy=0
hjg h

su'=u

2
Suppose t > o tracer 1s well distributed

— Taylor’s analysis can be applied

From Eq.(4.6)
| 1C ¢y ¢y ,
C (V)ZB&J._ZJ._ZU dydy +C (0) (a)

1 GCI J-y Uyd dy+C(——)
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Ch 4. Shear Flow Dispersion

1oCv[U LT . h
=—— || == dy+C (——=

D ox I2_2hy}_h yre=

2

1 6C ¢y [Uy? Uh . h
=— - dy+C (——

Daxj—g_zh 8} yre =)

1oC[uy* uh | . h
——=| =L -2y | +C-)

Dox| 6h 8 ° | » 2

2

~[ 3 2 2
_1oClUy’ Uh  Uy* Uh*| . h
D ox| 6h 8 48 16 2

1oCUlyY . W ( hj
Sl I AL VRLLI o L
Dox2h| 3 4° 12 2

By symmetry C' =0 @ y=0

~ 3
O:l@i _h_ +C' _E
D ox 2h| 12 2

~ 2
C'(_Dj — i@Uh

2) Dox 24

, 1eCU |y h

C(y)=———r| T —— 421
) D6x2h{3 4y} ( )

Dispersion coefficient. K

h
K :—éj_zgu'fzyj‘zyu'dydy

(A
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Ch 4. Shear Flow Dispersion

Note that K oc i
D

— Larger lateral mixing coefficient makes C

4-14
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Ch 4. Shear Flow Dispersion

4.1.4 Taylor's Analysis of Laminar Flow in a Tube

(alv n
=

@ axial symmetrical flow — Poiseuille flow

Tracer is well distributed over the cross section.
2

u(r)=u, (1 - r—ZJ — paraboloid (a)
a

€ mean velocity

dQ=u-2zrdr
o[ r
dr - Q _jo 2zr {uo [1 " j}dr

0 = 27,8’ ﬂé(l‘r—sz (Lj

a a
2 (! 2
=2ru,a IO z(1-z7)dz

1
= 27ru0a2 i—i
2 4

0

T _>
="—a’u,
2
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Ch 4. Shear Flow Dispersion

By the way, Q=0-za’

Uy

o=
2

@ 2-D advection-dispersion equation in cylindrical coordinate

2 2 2
Ly f1-0)E_p(2C, 1 o ®)
ot a“ ) ox or ror oOX

. . u
move coordinate system at velocity ?‘)

2

as before

neglect % and —;

OX

r
let z=—,{=x-Ul,7=t
a

Then (b) becomes
2 ~ 2" !
U,a (l_zz)ac:aci +18C
D 2 o¢ oz Z 0z
£:O at z=1
0z

Integrate twice w.r.t. z

, _
c =% (zz—lz4 £+const (c)
gD 2 OX
M I_Iu'C'dA
AOC )
OX OX
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Ch 4. Shear Flow Dispersion

where A=rza’, dA=2zrdr

Substitute (a), (¢) into (d), and then perform integration

2., 2
a’u,

K =
192D

[Example] Salt in water flowing in a tube

D=10"cm?/sec

u, =1cm/sec
a=2mm
0.01)(0.004
R, = ud _ ( " )1(0_6 ) =40<<2000 — laminar flow
V .

2 2 2 2
K=2Y% _ (0-2)° (1) =21cm? /sec ~10°D
192D 192(10-5)

== Initial period
2 0.4(0.2)
t, = 042 = # =1600sec =27 min

D (10*5)

u
X, = Ut, =7°t0
=(0.5)(1600) = 800cm

= 800 =4000a
0.2

X>X, = 1-D dispersion model can be applied
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Ch 4. Shear Flow Dispersion

Homework Assignment No. 4-1

Due: Two weeks from today

100 mg/1 0.2 m/sec —p

100 mg/l 0.4 m/sec ——p

100 mg/l 0.2m/sec —»

A hypothetical river is 30m wide and consists of three "lanes", each 10m
in width. The two outside lanes move at 0.2m/sec and the middle lane at
0.4m/sec. Every seconds complete mixing across the cross section of the river
(but not longitudinally) occurs. An instantaneous injection of a conservative
tracer results in a uniform of 100mg/f in the water 2m upstream and
downstream of the injection point. The concentration is initially zero elsewhere.
As the tracer is carried downstream and is mixed across the cross-section of the

stream, it also becomes mixed longitudinally, due to the velocity difference

between lanes, even though there is no longitudinal diffusion within lanes. We

call this type of mixing "dispersion".
1) Mathematically simulate the tracer concentration profile

(concentration vs. longitudinal distance) as a function of time for

several (at least four) values of including 10sec.
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Ch 4. Shear Flow Dispersion

2) Compare the profiles and decide whether you think the effective

longitudinal mixing increases or decrease as increases.

This "scenario" represents the one-dimensional unsteady-state advection and
longitudinal dispersion of an instantaneous impulse of tracer for which the

concentration profile follow the Gaussian plume equation

in which x = distance downstream of the injection point, M = mass injected
width of the stream, K = longitudinal dispersion coefficient, U = bulk velocity

of the stream (flowrate/cross-sectional area), t = elapsed time since injection.

3) Using your best guess of a value for U, find a best-fit value for K for
each and for which you calculated a concentration profile. Tabulate of

plot the effective K as a function t, of and make a guess of what

you think the functional form is.
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Ch 4. Shear Flow Dispersion

@ Dispersion mechanism in a hypothetical river

0Qmg/I 0.2m/s|—»
10dmg/I 0.4m/s|—» 2o
j0O0mg/ 0.2m/s|—»p v

1) 3 lanes of different velocities

2) Every seconds complete mixing occurs across the cross section of the river

(but not longitudinally) occurs, after shear advection 1s completed.

— sequential mixing model

3) Instantaneous injection

4-20



Ch 4. Shear Flow Dispersion

t.=10s; u,=0.2m/s; AX=2m

t=0

100 100
100 100

00
00
00

100 11 00
“Ax  Ax
0

longitudinal
/advecﬁon
01
00 10010
01
e L
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Ch 4. Shear Flow Dispersion

4.1.5 Aris's Analysis

&€ Concentration moment method

@ 2-D advective-diffusion equation in the moving coordinate system

2 2
6C 8C =D 0 C23 + 0 C23 (4.29)
67 65 o&™ oy
Now, define the p, moments of the concentration distribution
= [ &rc(g,y)dé
Define cross-sectional average of p,, moment
1 R
M, = ZJ.ACP(y)dA =G,
Take the moment of Eq. (4.29) by applying the operator J‘_OO EF ( )d &
® oC
n=[" gp—dg_—j EPCdE=—2 == Leibnitz rule
or = ot
[Re] Leibnitz formula
J‘Ul (3f _ Y fd
Ug aa Up
2)= J EP u — 5 = I §p =1 integral by parts
{[gpc j C, & ldg} = Cl,,, =0
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Ch 4. Shear Flow Dispersion

=—pu[~ ér'cde=—puC,,

3)= j EPD 82; = Djiggp %(%jdf =1 integral by parts
_D{{ } - —PfP 1d§}
=—Dp| & gds

—-op|[&'] - [ c(p-neag

=Dp(p-1)[  £"°Cdé=Dp(p-1)C, ,

0°C,
4 °Cdé=D
=[ ¢ j §°Cdg =D
Therefore Eq. (4.29) becomes
oC 0°C
a_rp— puC = D{p(p DszJrWZP} (4.33)
B.C.
DaCP =0at y=0,h

Take cross-sectional average of Eq. (4.33)

8C ———— 9°C
~7p _ puC = D{p(p—l)Cp2+W;’}

6r
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Ch 4. Shear Flow Dispersion

2 2~ oC
0 CZF’ _0 CZF’ _ 01 % | 0 =1 Reynolds average rule
oy oy oyl o
dM | .
dT - pucp—l = p(p_l)DM p-2 (434)

@ Eq. (4.34) can be solved sequentially for=0, 1, 2, ...

Equation Consequences as

p=0 dM,/dr=0 Mass is conserved

MO%IACO(y)dA:%J'J_ZCdfdA

(4.33) — oy _ D82CO
ot oy’
p=1 dg{[llzu'_co M, — consant
oC, 0°C,

2

(4.33) — ——u'CO =D
or

do’

aMm, " =2K +2D

p=2 t =2u'C, +2DC,

— molecular diffusion and shear flow dispersion are additive
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Ch 4. Shear Flow Dispersion

4.2 Dispersion in Turbulent Shear Flow
- Extend Taylor’s analysis to turbulent flow

- Cross-sectional velocity profile in turbulent motion in the channel is different

than in a laminar flow.

- Cross-sectional mixing coefficient is function of cross-sectional position.

2-D turbulent diffusion equation
oC oC oC oC ( oC j 0 oC
+U—+V—= &, +—| &,—
ot ox oy ot ox ) oy\ ' oy

(a)

Where C,u,v= time mean values; C=C = le.oT cdt

let v=0, turbulent fluctuation v # 0

oC oC o oC

assume —&, —

,—— <<—&,—
ox oy oy

Then (a) becomes

4-25



Ch 4. Shear Flow Dispersion

CaL 2K
ot ox oyl 7oy

Now, decompose C and U into cross-sectional mean and deviation

dC+C) (-, N = ~n_ 0 0 =
—(; )+(u+u)&(C+C):55ya—y(C+C) (c)

Transform coordinate system into moving coordinate according to U

o~ oC .oC .oC o oC
—C+ +U u

+ =—g,—
or  ar o oF oy ' oy

Introduce Taylor's assumptions (discard three terms)

e6C o oC

Uu—=—g — (4.35)
ot oy oy

Solution of Eq. (4.35) can be derived by integrating twice w.r.t. y

. oC oy 1y, '
C :gjog—yjoudydy+C(0)

Mass transport in streamwise direction

M = joh uC'dy = %J.Oh u joyng.oyu'dydydy
y

K= —%Iohu'joygiyjoyu'dydydy (4.36)
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Ch 4. Shear Flow Dispersion

@ Taylor's analysis of turbulent flow in pipe (1954)

U

[ o 4 15
0 T

r dz 1
Set 7=— —>—=—
a dr a
Then
u(z)=u,-u f(z) (a)

: : . . T
in which U =shear velocity = |-~

0
f(z) = logarithmic function [Eq. (1.27)]

< velocity defect law

*

_ 3u 230 . 4
SU=U0+——+—U log,, =
2 K K a

in which x=von Karman's constant ~ 0.4

¢ = distance from the wall

u=0+3.75u" +5.75u" log,, S
a
U 3 75425ms
u a
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Ch 4. Shear Flow Dispersion

@ Reynolds analogy

— mixing coefficients for momentum and mass transports are the same.

1) momentum flux through a surface

L —ga—u =1 Daily & Harleman (p. 56)
Yo, or

11) mass flux - Fickian behavior

g s
or
... 9 7
"8__§__87u (b)
or or
By the way,
r
T:Tog:”o (c)

Differentiate (a) w.r.t. r

a_u__*df(z) E__*ﬂl ()
or dz dr dz a

Divide (c) by (d)
T It
AT ©
or dz a

Substitute (e) into (b)
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Ch 4. Shear Flow Dispersion

el T 17, _(ro/,o)(za)_azu*
ST AT AT e dr
p@r P dz a dz dz

Now, tabulate u(r), u =u—u,e&(r)

Taylor’s equation in radial coordinates

B2 1] a»
Numerically integrate Eq. (4.39) to obtain C
Numerically integrate Eq. (4.36) to find K

K =10.1au” (4.40)

in which a = pipe radius

u = shear velocity

@ Elder's application of Taylor's method (1959)
- Assumptions

- Turbulent flow down an infinitely wide inclined plane

- assume von Karman logarithmic velocity profile
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Ch 4. Shear Flow Dispersion

U="(+my)
K

. : : _ du u’
in which u=u-o » —=———

dy «~yd

y =y/d
d = depth of channel

du .
r=peg ==Y

_n,(-y)_7 (-y) 1 o

= 1-y)d

T e AL
dy Ky d

(a)

(b)

(c)

Substitute Eq. (a) and Eq. (c¢) into Eq. (4.36) and integrate

8C d 1 d-
(Zn y
n=l1

—0.648)

0.404

3
K

K= du’

Input x=0.41

K =5.93du’

4-30
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Ch 4. Shear Flow Dispersion

@ General form for the longitudinal dispersion coefficient

Set
y =T~ y=hy. dy=hdy (a)
U= 5y =u'vu? (b)
u"
' E '
= — = E
g E—)s g ()

in which u = velocity deviation from cross-sectional mean velocity
1
— 1 ¢ 2
2 _ 1 2
u? = {hL(U>dy}

= intensity of the velocity deviation

= different from turbulent intensity

=measure of how much the turbulent averaged velocity deviates
throughout the cross section from its cross-sectional mean

E = cross-sectional average of ¢
Substitute (a) ~ (c) into Eq. (4.36)
o Lpr o ey Loy e [y s
K_—E_[Ou \/TIO 5_Ejo u \/u7h dy dy dy
L [ gt ey Lopy e
——E\/uigx/uih Iou IO ;J'O u dydydy

el e ®
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'u"dy'dy'dy'

Lapey 1 gy
Set |=—j0u jo ;jo (4.48)
Then (d) becomes
h’u?
K= I 4.47
= (4.47)
@ Range of values of for flows of practical interest
| =0.054~0.10 — 1=0.10
Charac.
Flow Velocity profile I K
length, h
r2 aZU 2
[()laminar flow ina tube  u=u,(1-—) a 0.0625 0
a 192D
|(ii)laminar flow at depth 2 2.2
(1 lamina P u=uy, {2@}—3’—2} d 00952 5 I
down on inclined plane d) d 945 D
|(ii1)laminar flow with a
: : y UZh?
linear velocity profile u=U = h 0.10
h 120D
across a spacing
|(iv)turbulent flow in a o .
. empirical a 0.054 | 10.1 au
Iplpe
(v)turbulent flow at
' 0.404 | .
depth down an inclined u=U + u—(1 +In X) d 0.067 du
K K
lane
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Ch 4. Shear Flow Dispersion

4.3 Dispersion in Unsteady Shear Flow
@ Unsteady flow

- reversing flow in a tidal estuary; wind driven flow in a lake caused by a
passing storm

= steady component + oscillatory component
@ Application of Taylor's analysis to an oscillatory shear flow

(1) linear velocity profile with a sinusoidal oscillation

u=Uu Xsin(ﬁj
h T

where T = period of oscillation

v
ud -

N A
R
0 < = >

> <

o [ =3

@ 'flip-flop' sort of flow

- reversing instantaneously between u=U % and -u=U % after every time

_ T
interval —
2

— after each reversal the concentration profile has to be reversed
4-33



Ch 4. Shear Flow Dispersion

— substitute —y for y in Eq. (4.21)
—s but enough time bigger than mixing time (T, ~ h* /D) is required before the

concentration profile is completely adopted to a new velocity profile.

(1) T>>T,

- concentration profile will have sufficient time to adopt itself to the velocity
profile in each direction

- time required for to reach the profile given by Eq.(4.21) is short compared to
the time during which has that profile.

— dispersion coefficient will be the same as that in a steady flow

2) T<<T,

- period of reversal is very short compared to the cross-sectional mixing time

- concentration profile does not have time to respond to the velocity profile
- C will oscillate around the mean of the symmetric limiting profiles, which is
C =0.

— dispersion coefficient tends toward zero

T >>T. dispersion as if flow were steady in either direction

T <<T. no dispersion due to the velocity profile
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Ch 4. Shear Flow Dispersion

@ Fate of an instantaneous line source when T <<T,

L L L yd Z yd VA A 4
LINE
SOURCE ( f_)

—
t=0
Uo b =1/2 t=T
rav ey aray sy il S oy S o 777777
(a) (b) (c) (d)
(A) : there is no cross-sectional mixing before the flow reverse.

@ Solution of Eq. (4.13) by Carslaw and Jaeger (1959)

IL.C. C(y,0)=0

. 0C .
- replace unsteady source term U 8—by a source of constant strength by setting

t=t,
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Ch 4. Shear Flow Dispersion

-D—=
or oy h ox T
£=O at y:iD

oy 2

C(y,0)=0

where C’= distribution resulting from a suddenly imposed source distribution
of constant strength
As diagrammed in Fig. 2.8, the solution for a series of sources of variable

strength, can be obtained by

. to .«
Cyn =, = C -ttt

For large t

: t 0 -«
Cyn =], 2C -t

By separation of variables / Fourier expansion

2UN* T oC& (-1 . y
2n—Nr=
ﬁDT@nzzllz—l sin( )ﬂh

1

.
Vs T |2 27t
x| —(2n-1)| — in| —+6
[HERRECaTS
2 2
S| 2 T
where 6, =sin —{{ z(2n-1) T—} +1}

N |~
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@ Average over the period of oscillation of K

1| ) h ox
1
——Lf--hz—-I-Zj;i(zn—l)“2 Zan-17| - 22-+1
7t D\T, ) & T,
T<<T, K=>0
2162

T>>T, KO—LU h

240 D

[Re] Case of T >>T,

For a linear steady velocity profile, u=U %sina
1 Uh . L«
G =— sin” —
120 D D
1 U

— = is an ensemble average of K, over all values of o

240 D

Intermediate behavior — Fig.4.7

L 015K ~0.03K,
=
%:LaKzQ&%
%:wasz
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Ch 4. Shear Flow Dispersion

(i1) Flow including oscillating and a steady component

u(y)=u,(y)sin2zt/T +u,(y)
u,=u, =Uy/h — pulsating flow found in blood vessel

Assume that the results by separate velocity profile are additive.

, - 2
Let C'=C, +C, is solution to £+u(t)§=gag
ot OX oy

Then C,' is solution to the equation

o
£+u sm(27zt/T)§— g Cz'
ot oy

C, 'is solution to the equation

oc, o€ &C,
+U,—=6——
ot ox oy

@ cycle-averaged dispersion coefficient

_ 11 h . 2t S
K :? . —hTE _E(Ul SIHT'FUZ)(CI +C2 )dydt
OX
1| 1ered
__T{?J. [huc/ sin 27 dydt+j u,C dy}
X
=K, +K,

where K, = result of oscillatory profile; K,=result of steady profile
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Ch 4. Shear Flow Dispersion

4.4 Dispersion in Two Dimensions

@ 2-D flow: velocity vector rotates with depth

where U = component of velocity U in the x direction

vV =component of velocity U in the y direction

c(2)
v < x

v

u(z)
y V@)

\ 4
zZ

Fig. 4.8 skewed shear flow in the surface layer of Lake Huron

» Taylor’s analysis applied to a skewed shear low with velocity profiles

- 2-D form of Eq. (4.10)

gL yE_2, L @)
OX oy 07 0z

% =0 at z=0,h (water surface & bottom)
z
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Ch 4. Shear Flow Dispersion

Integrate (4.61) w.r.t. z twice

jo - j [ +V —_)dzdz (4.62)

- Bulk dispersion tensor

M, = [ uCidz _hk, Lk &L
0 OX Y oy

M, = [ VCidz=-hK, @—hK ac (4.63)
0 OX Y oy

Substitute (4.62) into (4.63)

oC oC
@:  [uf- -, ( v—jdzdzd _h( &—KXyEJ
K, = —%Johu'jozéj'ozu'dzdzdz (4.64a)

Ky = —%J.Ohu' IOZ éJ‘OZ v dzdzdz (4.64b)

b [ jogj( V—szdzdz—h( ny%—K %)

1 ¢h pzlpz
Kye=—r- jo v jo - jo u'dzdzdz (4.64c)
K, =—L{"v[* L[ Vazdzdz 4.64d
W _Hjo jo ;.[0 (4.64d)
Kys Ky~ depend on the interaction of the x and y velocity profiles
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Ch 4. Shear Flow Dispersion

K,~ velocity gradient in the X direction can produce mass

transport in the y direction and vice versa

©Mean flow on a continental shelf discussed by Fischer (1978)

y (offshore)
v=V,
» X (alongshare)

d <«—Uu
X
Z

Y z=d
U 0

V==Y, v

(4.65)

< :d_z[uoz /120 55UV, /192}
&

50V, /192 U,?/120

y‘#
t =5days
u=5cm/s
x=22km U,=5cm/s
+ (=mt) V,=5cm/s
> x
F’ 28 km
Source
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Ch 4. Shear Flow Dispersion

@ Governing Equation of 2-D Dispersion

v

a, X
d, ax
7 dy _> qx+%Ax
l OX
aq
vy q, +—Ay
oy

(1) Conservation of mass

oC aq, aq
EAxAy = {qx —(qx + ™ ij}Ay + {qy —(qy +Eyij}Ax

oC &g

— X

ot ox oy

(i1) Apply Taylor’s Analysis on 2-D shear flow

0.-M, =o€ )an= - Ju [ 1][uE

:_Kxx§_Kx %
OX Y oy

, =M, (V6 )= ['vedz = [v] j(

kX _ €
y 8X Way

(i11) Substitute (2) & (3) into (1)

(1)

+V —j dzdzdz
(2)
+V —] dzdzdz

3)

ot ox

@__g(_K oC acj a[_K oC



Ch 4. Shear Flow Dispersion

(iv) Return to fixed coordinate system containing mean advective velocities

oC _66 8C 0 oC oC 0 oC oC
+U Ka—+Ky— |+ | Kpn—+K,—
ot x 8y o OX Yoy ) oyl "ox Yoy

In general K, and K, are small compared with K, and K, . Thus, those

two terms are often neglected. Then, 2-D depth-averaged transport equation

becomes

oC oc oC 0 [ acj 0 oC
+U—+V Ky— [+—| K,,—
ot X oy  ox ox ) oyl oy

[Cf] 2-D depth-averaged models (ASCE, 1988; vol.114, No.9)

- Scalar transport equation for ®

o(HD) +a(HUcD) +8(HV®) =lﬁ(HJ‘X)+lQ(HJ‘y)
ot OX oy L OX p oy
paxjpu ®'dz +——jpv ®'dz
dlsper5|on dlspersmn
where J =~ pU$dz turbulent diffusion in x-dir

J = J— pu¢dz turbulent diffusion in y-dir

u=u-U — Time fluctuation
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Ch 4. Shear Flow Dispersion

U=uU-uU — depth deviation

If dispersion >> turbulent diffusion

Then neglect turbulent diffusion or incorporate turbulent diffusion into

dispersion.
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