1/5

Chapter 1. Basic Characteristics of Soils

Rock: Hard rigid coherent deposit forming part of the earth's crust,
 which may be of igneous, sedimentary, or metamorphic origin,

- - chemical clay minerals (clay soils)
 kaolinite/ illite/ montmorillonite
 - physical single grain structures (granular soils)
- Soil: Any uncemented or weakly cemented accumulation of mineral particles formed by the weathering of rocks, the void space between the particles containing water and/or air.
- ⊕ Residual vs. Transported Soils
 - Residual soil formed by the weathering products at their place of origin
 - Transported soil formed by transportation and deposition of the weathering products by glaciers, water, wind, or gravity.

2/5

- 1. Glacial soils: formed by transportation and deposition of glaciers → moraine(氷堆石) ← boulder clay
- 2. Alluvial soils: transported by running water & deposited along streams/ well sorted & abraded/ Gravel (flood plain) - fine sand & silts (delta) - clay particles (sea or lake)/ uniformly graded
- 3. Aeolian soils: transported by wind, Loess is a fine wind blown dust $(0.01 \sim 0.05 \text{mm})$ in hot arid climates, true loess never been saturated. On saturation, bond weakened & collapse.
- Colluvial soils: formed by movement of soils from its original place by gravity such as during landslides & collapse.
- * Diluvial Soils: formed by transportation at the Deluge (Noah)
- Clay minerals: Kaolinite/ Illite/ Montmorillonite
 - unit elements = silica tetrahedron (O^{2-}) alumina octahedron (OH) $^-$)
 - · structures by the minerals
 - specific surface (S_s) the ratio of surface area per gram of mass

mineral	$S_s(m^2/g)$
Quartz sand(0,1mm)	0,02
Kaolinite	20(15)
Illite	80
Montmorillonite	800

3/5

- · Adsorbed water
- 1. Water molecules tightly adhering to the mineral surface forming a layer
- To expel all the adsorbed water, dry them at 105℃
- 3. Approximate adsorbed water content $= 0.05 S_s$
- · Flocculation & Dispersion
- Clay particles under attractive (Van der Waals) force as well as repulsive force,
- 2. When the adsorbed water layer thin → attractive force dominant → edge to edge contact → group formed → settles together
- 3. Marine clays: 1) high concentration of cations 2) thin a.w. layer 3) flocculent str.

Fresh water clays: dispersed structure

4. Flocculent structure display high liquid limit

[Fig. 1] Particulate Structures in clay

(a) Flocculent (b) Dispersed

4/5

swelling & shrinkage

- 1. The inter-particle and adsorbed water layer forces are in equilibrium under ambient pressure and temperature, by the movement of water molecules in & out of the a,w, layer
- 2. Any change in the ambient conditions → change in moisture content occurs → If water taken; swell, if water forced out; shrink
- 3. Swelling potential: montmorillonite(v, high), illite(f, high)

plasticity & cohesion

- Plasticity: the most characteristic property of clay soils ← size
 & nature of clay mineral particles & a,w, layer
- 2. A, S, \uparrow (e.g. montmorillonite) \rightarrow Plasticity v. high & extremely compressible
- At low moisture content water ≒ adsorbed water → strong attractive force between clay particles, called cohesion.

As m.c. ↑ particles slide each other w/o crumbling (plastic lim.)

As m,c, \uparrow suction(binding effect) reduced to nothing \rightarrow liquid behavior(liquid lim.)

⊙ Organic Soils

- 1. A mixture of mineral grains and organic material of mainly vegetable origin (lakes, bays, estuaries, harbours, reservoirs)
- 2. Smooth to the touch, dark coloured, odour

5/5

Other Terminologies

Hardpan: A soil of dense well-graded somewhat cohesive

aggregates of mineral particles. Offering an

exceptionally great resistance to drilling,

Peat: True peat is made up entirely of organic matter,

Spongy, highly compressible, combustible,

Boulder clay(Till): A soil of glacial origin consisting of a very wide range of

particle sizes from finely ground rock flour to boulders

Drift: A geological term to describe superficial unconsolidated

deposits of recent origin; Alluvium, glacial moraines &

boulder clay, wind blown sands, loess, etc.

Marl: A f, stiff or v, stiff marine calcareous clays of

greenish colour

Varved clay: A clay of alternating layers of medium gray

inorganic silt and darker silty clay, The layer

thickness $<\frac{1}{2}$ ". Transported into fresh water

lakes by melt water of glaciers. The undesirable

properties of silt and soft clay combined,

Bentonite: A clay with high content of montmorillonite formed

by chemical alteration of volcanic ash, It swells

more, and shrinks more,

Loam:

