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5. Chapter Mixing in Rivers 

 

◆ Two phases of hydrodynamics mixing processes 

1) Near field:  mixing is controlled by the initial jet characteristics of 

momentum flux, buoyancy flux, and outfall geometry 

2) Far field:  source characteristics are less important, mixing is controlled by 

buoyant spreading motions and passive diffusion due to ambient turbulence 

 

◆ Three stages in the mixing of a effluent into a river 

Stage I: Near field mixing  

→ initial momentum and buoyancy determine mixing near the outlet 

→ vertical mixing is usually completed  

→ Ch.9 Turbulent jets and plumes 
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Ch.10 Design of ocean wastewater discharge system 

• Multiport diffuser 

- linear structure consisting of many closely spaced ports, or nozzles, through 

which wastewater effluent is discharged at high velocity into the receiving 

water body 

- attractive engineering solution to the problem of managing wastewater 

discharge in an environmentally sound way 

- offer high degree of initial dilution 

- optimally adapted to the assimilative characteristic of the water body 

•  thermal diffuser:  heated water discharge from the once-through cooling 

systems of steam-electric power plants 

•  wastewater diffuser: wastewater discharge from the sewage treatment plants 

 

◆ Three groups of parameters for jet analysis 

1) receiving water flow patterns – ambient water depth, velocity, density 

stratification 

2) pollutant discharge flow characteristics – discharge velocity (momentum), 

flow rate, density of pollutant (buoyancy) 

3) diffuser characteristics -  single/multi ports, submerged/surface discharge, 

alignment of port 

 

- jet analysis model:  CORMIX (Cornell Mixing Zone Export System) 

    VISJET 
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◆ water-quality policy in USA 

- "Technical support document for water quality-based toxics control", Office of 

Water, Washington, DC. (1991) 

→ regulations on toxic control with higher initial mixing requirements 

→ concept of regulatory mixing zone (RMZ) 

= limited area or volume of water where initial dilution of an aqueous pollutant 

discharge occurs 

- regulator = U.S. Environmental Protection Agency 

- should predict the initial dilution of a discharge and extent of its mixing zone 

- toxic dilution zone (TDZ) for toxic substances 

- regularly mixing zone (RMZ) for conventional pollutants 

◆ RMZ 

streams, rivers lakes, estuaries 

Florida:  RMZ ≤ 800m 

and ≤ 10% total length 

≤ 125,600m² 

and ≤ 10% surface area 

Michigan:  RMZ ≤ 1/4 cross-

sectional area 
≤ 1000ft radius 

West Virginia:  RMZ ≤ 20∼33% 

cross-sectional area and ≤ 5∼10 

times width 

≤ 300ft any direction 

 

◆ near field mixing  ≤  regulatory mixing zone 
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Stage II: Lateral mixing 

→ waste is mixed across the receiving channel primarily by turbulence in the 

receiving stream  

 

Stage III: Longitudinal dispersion 

→ process of longitudinal shear flow dispersion erases any longitudinal 

concentration variations  

→ Taylor's analysis of longitudinal dispersion 

 

Far field = Stage II+ Stage III 

→ deal with a source of tracer without its own momentum or buoyancy 
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5.1 Turbulent Mixing in Rivers 

5.1.1 The Idealized Case of a Uniform, Straight, Infinitely Wide Channel of 

Constant Depth 

- mixing of source of tracer without its own momentum or buoyancy 

→ homogeneous, stationary turbulence of ambient water 

- important Lagrangian length scale ≈ depth 

◆ Eq. (3.40) : 
1
2'2

L uε ⎡ ⎤= ⎣ ⎦      (1) 

where  ε = turbulent mixing coefficient 

L = Lagrangian length scale ≈ d   (a) 
1
2'2u⎡ ⎤

⎣ ⎦ = intensity of turbulence 

• Lauffer (1950) - Experimental Data 

turbulent intensity  shear stress on the wall∝   

 
 

•  Henderson (1966) 

- bottom shear stress is evaluated by a force balance 

 

0 gdSτ ρ=  

For dimensional reason, shear stress must be expressed as a velocity 
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→ shear velocity * 0u gdS
τ
ρ

∴ = =      (b) 

where S = Slope of the channel 

Substitute (a) & (b) into (1) 
*d uε∴ ∝  

1) vε  = vertical mixing  

→ influence of surface and bottom boundaries  

→ turbulence will not be isotropic 

2) t lε ε=  = transverse and longitudinal mixing 

→ no boundaries to influence flow 

 

[Re] Shear stress and shear velocity 

 

 

For uniform flow 

  

0 ( ) sinPdx gAdxτ ρ θ=  
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0 sinAg
P

τ ρ θ=  

Set  tan sinS θ θ= ≈  

R = hydraulic radius A
P

=  

 

Then 0 RSτ γ=  

 

For very wide channel (b>>d) 

2 1 2

bd dR d
db d
b

= = ≈
+ +

 

0 dSτ γ∴ =  

 
5.1.1.1 Vertical Mixing 

(1) Vertical mixing coefficient in 3D model 

→ no dispersion effect by shear flow 

i) vertically varying coefficient: 

- vertical mixing coefficient for momentum due to logarithmic law 

velocity profile → Eq. 4.43 

( )* ( / ) 1 /v du z d z dε κ= −⎡ ⎤⎣ ⎦      (5.2) 

 

[Re] Velocity profiles:  

- vertical profile of u-velocity → logarithmic 
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- vertical profile of v-velocity → linear → might be neglected because 

v-velocity is relatively small compared to u-velocity 

 

· Reynolds analogy 

→ The same coefficients can be used for transport of mass (pollutant) and 

momentum 

→ verified by Jobson & Sayre (1970) 

 

ii) depth-averaged coefficient 

- average Eq. (5.2) over the depth, taking 0.4κ =  

  

*

0

1 1
d

v
z zdu dz

d d d
ε κ ⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫  

* *0.067
6

du duκ
= =        (5.3) 

 

[Cf] For atmospheric boundary layer:  *0.05v duε =   

where  d = depth of boundary layer 

*u = shear velocity at the surface of the earth 

 

5.1.1.2 Transverse Mixing 

(1) Transverse mixing coefficient in 3D model 

→ no dispersion effect by shear flow, turbulence effect only 
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→ vertically varying coefficient 

• For infinitely wide uniform channel, there is no transverse velocity profile 

→ not possible to establish a transverse analogy of Eq. (5.2) 

→ need to know velocity profiles:  

- transverse profile of u-velocity → parabolic 

- transverse profile of w-velocity → might be neglected because w-

velocity is usually very small 

 

(2) Transverse mixing coefficient in 2D model 

→ dispersion effect by shear flow due to vertical variation of v-velocity 

→ depth-averaged coefficient 

→ rely on experiments 

→ see Table 5.1 for results of 75 separate experiments 

  
*0.15t duε ≈          (5.4) 

 

5.1.1.3 Longitudinal Mixing 

(1) Longitudinal mixing coefficient in 3D model 

→ no dispersion effect by shear flow, turbulence effect only 

→ longitudinal analogy of Eq. (5.2) 

→ need to know velocity profiles:  

- longitudinal profile of v-velocity → linear 

- longitudinal profile of w-velocity → might be neglected because w-

velocity is usually very small 
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(2) Longitudinal mixing coefficient in 2D model 

→ depth-averaged coefficient 

- longitudinal turbulent mixing is the same rate as transverse mixing because 

there is an equal lack of boundaries to inhibit motion 

- However, longitudinal mixing by turbulent motion is unimportant because 

shear flow dispersion coefficient caused by the velocity gradient (vertical 

variation of u-velocity) is much bigger than mixing coefficient caused by 

turbulence alone  

 
*5.93 40l tK du ε= ≈  

[Re] ' '

0 0 0

1 1h y y

y

K u u dydydy
h ε

∴ = − ∫ ∫ ∫  

· Aris (1956) 

coefficients due to turbulent mixing and shear flow are additive 

 

l LK Kε+ →  

 

→ can neglect the longitudinal turbulent mixing 

 

(3) Longitudinal dispersion coefficient in 1D model 

→ Section 5.2 

 

5.1.2 Mixing in Irregular Channels and Natural Streams 

5.1.2.1 Mixing in natural channels 

1) depth may vary irregularly → pool & riffle sequences 
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2) channel is likely to curve 

3) there may be large sidewall irregularities → groins, dikes 

 

i) Vertical mixing coefficient 

• These have not much influence on vertical mixing since scale of vertical 

motion is limited by the local depth, d 

*0.067v duε∴ =   

 

ii) Transverse mixing  

• Transverse mixing is strongly affected by the channel irregularities because 

they are capable of generating a wide variety of transverse motions (vertical 

variation of v-velocity)  

• Transverse mixing in open channels with curves and irregular sides 

→ see Table 5.2 

*0.3 0.7t

du
ε

< <  

 

1) effect of channel irregularity:  

the bigger the irregularity, the faster the transverse mixing 
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2) effect of channel curvature : secondary flow causes trasnsverse dispersion 

due to shear flow 

 

 

 

 

- when a flow rounds a bend, the centrifugal forces induce a flow towards the 

outside bank at the surface, and a compensating reverse flow near the bottom. 

→ secondary flow generates 

→ Fischer (1969) predict a transverse dispersion coefficient based on the 

transverse shear flow 
2 2

* *25t u d
du u R
ε ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
         

 

where R = radius of curvature 

 

◆ Yotsukura and Sayre(1976) → see Fig.5.3 
2 2

* *
t u W

du u R
ε ⎛ ⎞ ⎛ ⎞∝ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

where W = channel width  



Ch 5. Mixing in Rivers 

5-13 
 

 

straight, uniform channels *0.15t duε =  

natural channels with side irregularities *0.4t duε =  

meandering channels with moderate side irregularities ( ) *0.6 50%t duε = ±  

 

5.1.2.2 2D depth-averaged model 

 

• Transverse dispersion coefficient in meandering channels 

- Baek et al. (2006) 

- Seo et al. (2008) 

- Baek and Seo (2008) 

 

• Transverse dispersion coefficient in natural streams 

- Seo et al. (2006) 

- Jeon et al. (2007) 
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5.1.3 Computation of concentration distributions 

 

 

- compute the distribution of concentration downstream from an continuous 

effluent discharge in a flowing stream  

 

*

*

0.6 10
0.067

t

v

du
du

ε
ε

= ≈  

 

mixing time ( )2length
T

ε
∝  

( ) ( )2 2 2 230 1/
1 10

t v

t t v t

W dT W
T d

ε
ε ε ε

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∴ = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

290 10= ≈  

210t vT T∴ ≈  

 

→ vertical mixing is instantaneous compared to transverse mixing 

→ assume that effluent is uniformly distributed over the vertical 

→ analyze the two-dimensional spread from a uniform line source 
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◆ Maintained source in 2D: case of a rectangular channel of depth into which is 

discharged M
⋅

 units of mass (per time) 

Recall Eq. (2.68) 

2/ exp
4

4 t
t

M d y uC
xxu

u
ε

πε

⋅
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

      

 (5.7) 

 

i) For very wide channel, when 22 /tt uε>>  

→ use Eq. (5.7) 

ii) For narrow channel, consider effect of boundaries  

→ method of superposition 

 

 

0 0C at y and y W
y

∂
= = =

∂
 

Define dimensionless quantities by setting 
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0
MC

udW

⋅

= = mass rate / volume of ambient water 

→ concentration after cross-sectional mixing is completed 

'
2

txx
uW
ε

=  

' /y y W=  

 

Then Eq. (5.7) becomes 

 

 

2

'

22

( )
exp 44 tt

M y
udW WC xx

uWuW

επε

⋅

⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

'2
0

''
exp

44
C y

xxπ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

 

'2

' 1/ 2 '
0

1 exp
(4 ) 4

C y
C x xπ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
  

 

If the source is located at ' '
0 0( )y y y y= =  
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By superposition 

 
' ' 2 ' ' 2 ' ' 2

0 0 0( ) ( ) ( 2 )
4 ' 4 ' 4 '

1
'0 2

1

(4 )

y y y y y y
x x xC e e e

C xπ

⎧ ⎫ ⎧ ⎫ ⎧ ⎫− + − +⎪ ⎪ ⎪ ⎪ ⎪ ⎪− − −⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭

⎡ ⎤
⎢ ⎥= + + + •• •
⎢ ⎥
⎣ ⎦

   

( ){ }2' ' 2 ' ' ' '
0 01

' 2

1 exp ( 2 ) / 4 exp 2 / 4
(4 ) n

y y x y n y x
xπ

∞

=−∞

⎡ ⎤⎡ ⎤= − − + + − − +⎣ ⎦ ⎢ ⎥⎣ ⎦∑ (5.9) 

 

⓵ Continuous centerline discharge: '
0 1/ 2y =  

→ Fig.5.5 
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◆ Longitudinal distance for complete transverse mixing 

For centerline injection, 20.1 /c tL uW ε=  

 

'
2

0

0.95 0.1 tC xat x
C uW

ε⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
 

20.1 /c tL x uW ε∴ = =  

 

For side injection,  
2 20.1 (2 ) / 0.4 /t tL u W uWε ε= =      

 

[Ex 5.1] Spread of a plume from a point source               

An industry discharges effluent; 

C = 200ppm 

Q = 3MGPD  
6

3

3 10 4.64
7.48 / 24 3600

GPD CFS
G ft
×

= =
× ×

 



Ch 5. Mixing in Rivers 

5-19 
 

Rate of mass input = M
•

= QC 

= 4.64(200ppm) = 928 CFSppm 

 

Centerline injection in very wide, slowly meandering stream 

30d ft= ; 2u fps= ; * 0.2u fps=  

 

Determine the width of the plume, and max. conc. at =1000ft downstream from 

discharge 

 

[Sol] 

For meandering stream,  
*0.6t duε = ( )( ) 20.6 30 0.2 3.6 /ft s= =  

 

Use Eq.(5.7) for line source 

 

2

1
2

exp
44 t

t

M y uC
xxud

u

επε

⋅
⎛ ⎞

= −⎜ ⎟
⎝ ⎠⎛ ⎞

⎜ ⎟
⎝ ⎠

 

2 2

2exp exp
4 2t

y y
x

u
ε σ

⎛ ⎞
⎜ ⎟ ⎛ ⎞
− ≡ −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎜ ⎟⎜ ⎟
⎝ ⎠

 

2 2 2
,t tx x

u u
ε ε

σ σ= =  

 

a) width of plume can be approximate by 4 σ . (95% of total mass) 



Ch 5. Mixing in Rivers 

5-20 
 

( )( )2 3.6 10002
4 4 4 240

2
t xb ft

u
ε

σ= = = =  

 

b) maximum concentration 

( )( )
max 1 1

22 2

928

4 4 3.6 / 10002 30
2 /

t

M CFSppmC
x ft s ftud fps ft

u ft s
πε π

⋅

= =
⎛ ⎞ ⎛ ⎞× ×
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
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[Ex 5.2] Mixing across a stream                                    

→ consider boundary effect 

Given :  

 

 

Find: length of channel required for "complete mixing" as defined to mean that 

the concentration of the substance varies by no more than 5% over the cross 

section 

 

[Sol] 

Shear velocity 

( )( )* 32.2 5 0.0002 0.18 /u gdS ft s= = =  

 

For uniform, straight channel 
*0.15t duε =    

( )( ) 30.15 5 0.18 0.135 /ft s= =  

 

For complete mixing from a side discharge 
20.4 / tL uW ε=   

( )( )20.4 2 200 / 0.135 237,000 45 72ft mile km= = ≈ ≈  
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[Ex 5.3] Blending of two streams                                   

Given :  

 

 

Find :  

a) length of channel required for complete mixing for uniform straight channel 

b) length of channel required for complete mixing for curved channel with a 

radius of 100ft 

 

[Sol] 

Manning's formula 
2 1
3 21.49u R S

n
=  

R = hydraulic radius = A/P 
5 / 3

2 / 3 1/ 2 1/ 2
2 / 3

1.49 1.49 AQ Au AR S S
n n p

= = =  

( )
( )

( )
( )

5 / 3 5 / 3
1/ 2

2 / 3 2 / 3

201.49100 0.001 145.41
0.030 20 2 10

d d
d d

∴ = =
+ +

 

( )2 / 35 / 3 0.688 10d d= +  

( )2 / 50.799 10d d= +  
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By trial-error method, 2.2d ft=  

( )
( )
2.2 20

1.8
20 4.4

R = =
+

 

( )
2 / 3

1/ 21.49 2.2 20 0.001 2.32 /
0.030 20 4.4

u ft s×⎛ ⎞= =⎜ ⎟+⎝ ⎠
 

( )( )* 32.2 1.8 0.001 0.24u gRS fps∴ = = =  

*0.15t duε = = 0.15(2.2)(0.24)=0.079 ft2/s 

 

Think an upper bound first 

 

 

i) For side injection only 

( )( )
( )( )

22 2.32 20
0.4 0.4 4687

0.15 2.2 0.24t

uWL ft
ε

= = =  

 

ii) Consider sources ranging '
0 0 ~ 1/ 2y =  → method of images  
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→ superposition of solutions for the step function 

Eq.(2.33) for unbounded system 
' '

'
0

1 1/ 2 2 1/ 2 2
2 4 ' 4n

C y n y nerf erf
C x x

∞

=−∞

⎛ ⎞+ + − +
= −⎜ ⎟

⎝ ⎠
∑  →  Fig.5.9 

 

where ' '
2/ ; txy y W x

uW
ε

= =  

 

From Fig.5.9, max. deviation in concentration is 5% of the mean when ' 0.3x ≈ . 

'
2 0.3tLx

uW
ε

∴ = =  

( )
( )( )

22 (2.32) 20
0.3 0.3 3515 4687

0.15 2.2 0.24t

uWL ft ft
ε

∴∴ = = = <  

 

For curved channel 
2 2

* *25t u d
du u R
ε ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

( )( )
2 2

22.23 2.225 2.2 0.24 0.60 /
0.24 100t ft sε ⎛ ⎞ ⎛ ⎞∴ = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

Compare to tε  for uniform channel 

 
* 20.15 0.15(2.2)(0.24) 0.079 /t du ft sε = = =  

0.60/ 7.5
0.08t C b uε ε = =  

( )( )22 0.3 2.32 20
0.3 464

0.60t

uWL ft
ε

= = =  
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5.1.4 Complication in Real Streams 

- Use of the Cumulative Discharge Method 

 

 

In rivers the downstream velocity varies across the cross section 

→ cumulative discharge method by Yotsukura and Sayre (1976) 

u = cross-sectional average velocity 

u = velocity averaged over depth at some value of y 

 

( ) ( )

01
d y

u udz
d y −

= ∫        (a) 

( )dq d y yuδ=        (b) 

 

 cumulative discharge ∴  

0 0
( ) ( )

y y
q y dq d y udy= =∫ ∫       (c) 

( ) 0 0q y at y= =  

( )q y Q at y W=  
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• Depth-averaged 2D equation for transverse diffusion 

- assume steady-state, neglect longitudinal mixing and v-velocity 

 

t
C C Cu
t x y y

ε
⎛ ⎞∂ ∂ ∂ ∂

+ = ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
      (d) 

 

Integrate (d) over depth 
0 0

( )td d

C Cu dz dz
x y y

ε
− −

∂ ∂ ∂
=

∂ ∂ ∂∫ ∫      (e) 

 

From Eq.(a) 

( )
0

d
udz d y u

−
=∫   

 

Eq. (e) becomes 

( ) ( ) t
C Cd y u d y
x y y

ε
⎛ ⎞∂ ∂ ∂

= ⎜ ⎟∂ ∂ ∂⎝ ⎠
       

( ) ( )1
t

C Cd y
x d y u q y

ε
⎛ ⎞∂ ∂ ∂

= ⎜ ⎟∂ ∂ ∂⎝ ⎠
     (f) 

 
Transformation from y to q 

( )q d y u
y y q q
∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
      (g) 

 

Substituting Eq. (g) into Eq.(f) yields 

( ) ( )1
t

C Cd y
x d y u q y

ε
⎛ ⎞∂ ∂ ∂

= ⎜ ⎟∂ ∂ ∂⎝ ⎠
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( ) ( ) ( )2
t t

C C Cd y d y u d y u
x q q q q

ε ε
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂

∴ = =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 

2

2q
C C
x q

ε∂ ∂
∴ =

∂ ∂
 

 

where 2
q td uε ε= ≅  constant 

→ Gaussian solution (curve) in the x-q coordinate system 

 

◆ Advantage of x-q coordinate system 

- A fixed value of is attached to a fixed streamline, so that the coordinate system 

shifts back and forth within the cross section along with the flow. 

→ simplifies interpretation of tracer measurements in meandering stream 

→ see Fig.5.10 

→ Transformation from transverse distance to cumulative discharge as the 

independent variable essentially transforms meandering river into an equivalent 

straight river. 
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5.2 Longitudinal Dispersion in Rivers 

• After a tracer has mixed across the cross section, final stage in the mixing 

process is the reduction of longitudinal gradients by longitudinal dispersion. 

• longitudinal dispersion 

1) may be neglected when effluent is discharged at a constant rate  

→ Streeter-Phelps equation 

2) is important when accidental spill of a quantity of pollutant occurs and when 

output from a STP has a daily cyclic variation 

• 1D dispersion equation  
2

2

C C Cu K
t x x

∂ ∂ ∂
+ =

∂ ∂ ∂
 

 

→ apply shear flow dispersion theory to evaluate the longitudinal dispersion 

coefficient K 

 

5.2.1 Theoretical Derivation of Longitudinal Dispersion Coefficient 

◆ Elder's analysis of dispersion 

- due to vertical variation of u-velocity (logarithmic profile) 

[ ]{ }
*

( ) 1 ln /uu z u z d d
κ

= + + +  

*5.93K du=  
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◆ experimental results shows *5.93K du>> → Table 5.3 

1) Godfrey and Frederick (1970) – natural streams 

* 140 ~ 500K
du

=  

 

2) Fischer (1967) - Laboratory channel 

* 150 ~ 392K
du

=  

 

- Fischer (1968) - Green-Duwamish River 

* 120 ~ 160K
du

=  

 

3) Yotsukura et al. (1970) - Missouri river 

* 7500K
du

=  

 

(4) Seo (1990) - Pool-Riffle lab. model 

* 5.7 ~ 11.5K
du

=  for main flow zone only 

 

→ Elder's result does not apply to real stream dispersion (1D model) 
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◆ Fischer’s model (1966, 1967)  

He show that the reason that Elder's result does not apply to 1D model is 

because of transverse variation of across the stream → see Fig.5.11 

 

 
 

vertical velocity profile, ( )u z  → logarithmic 

transverse velocity profile → parabolic, polynomial 

- depth-averaged velocity at y y=  

( ) ( ) ( )
0

( )

1 ,
d y

u y u y z dz
d y −

= ∫  

 

- plot of ( )u y vs y  → Fig.5.12 

 shear f∼ low velocity profile extending over the stream width W 
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Remember that longitudinal dispersion coefficient is proportional to the square 

of the distance over which the shear flow profile extends. 

Eq. (4.26) 
2 '2h uK I
E

=  

2K h∝  

where h = characteristic length 

say that / 10W d ≈  

100W dK K∴ ≈  

 

→ transverse profile u(y) is 100 or more times as important in producing 

longitudinal dispersion as the vertical profile. 

→ The dispersion coefficient in a real stream (1D model) should be obtained by 

neglecting the vertical profile entirely and applying Taylor's analysis to the 

transverse velocity profile. 

 

◆ Balance of diffusion and advection  
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Let  ' ( ) ( )u y u y u= −  

 
' ( ) ( )C y C y C= −  

u = cross-sectional average velocity 

 

Equivalent of Eq. (4.35) is 

( )
'

'
t

C Cu y
x y y

ε∂ ∂ ∂
=

∂ ∂ ∂
    (a) 

 

Integrate Eq. (a) over the depth 

( )
'0 0'

td d

C Cu y dz dz
x y y

ε
− −

∂ ∂ ∂
=

∂ ∂ ∂∫ ∫    (b) 

( ) ( ) ( )
'

'
t

C Cu y d y d y
x y y

ε∂ ∂ ∂
∴ =

∂ ∂ ∂
   (c) 

 

Integrate Eq. (c) w.r.t. y  

( ) ( )
'

'

0

y

t
C Cu y d y dy d
x y

ε∂ ∂
=

∂ ∂∫      (5.15) 

( ) ( )
'

'

0

1 y

t

C Cu y d y dy
y d xε

∂ ∂
=

∂ ∂∫   (d) 

 

Integrate Eq. (d) w.r.t. y  

( ) ( )' '

0 0

1y y

t

CC u y d y dydy
d xε

∂
=

∂∫ ∫    (e) 

 

Eq. (4.27) 

' '1
A

K u C dA
CA
x

= −
∂
∂

∫     (f) 
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Substitute Eq. (e) into Eq. (f) 

' '1 1 1
A

t

CK u du dydydA
CA x d
x

ε
∂

= −
∂ ∂
∂

∫ ∫ ∫  

 

Substitute dA dy d=  

' '

0 0 0

1 1W y y

t

K u d du dydydy
A dε

= − ∫ ∫ ∫      (5.16) 

 

◆ Simplified equation 

Let 
' '

' '' ' '

2
/ ; ; ;

'
t

t
t

u yd d d u y
Wu

εε
ε

= = = =  

 

overbars mean cross-sectional average;  

d = cross-sectional average depth 

Then 
2 '2

t

W uK I
ε

=         (5.17) 

 

where  
' '1 '' ' '' ' ' '

' '0 0 0

1y y

t

I u d u dy dy dy
dε

= −∫ ∫ ∫  

 

Compare with Eq. (4.26) 
2 '2h uK I
E

=  
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[Example 5.4]                                                        

Given: cross-sectional distribution of velocity (Fig.5.11) of Green-Duwamish at 

Renton Junction 
20.133 / sect ftε =  

 

Find: longitudinal dispersion coefficient 

Solution: divide whole cross section into 8 subarea 

' '

0 0 0

1 1W y y

t

K u d du dydydy
A dε

= − ∫ ∫ ∫  

→ perform inner integral first 

 

Column 2:  transverse distance to the end of subarea 

Column 4: A d yΔ = Δ  

Column 46: Q u AΔ = Δ  

Column 8: 'Relative Q u AΔ = Δ  

Column 9: Cumulative of 'Relative Q u AΔ = Δ  

Column 11: '

0 0

1 (10)
y y

t t

ydu dydy Col
d dε ε

Δ
= ∑∫ ∫  

Column 13: ' '

0 0 0

1 (8) (12)
W y y

t

u d du dydydy Col Col
dε

= ×∫ ∫ ∫  

 

 
1 (13)K Cumulativeof Col
A

= −  

 

 

 

 



Ch 5. Mixing in Rivers 

5-35 
 

Homework Assignment #5-1 

Due: Two weeks from today 

 

1. Estimate the longitudinal dispersion coefficient by using the cross-

sectional distribution of velocity measured in the field using Eq. (5.16). 

Take S (channel slope) = 0.00025 for natural streams. 

2. Compare this result with Elder's analysis and Fischer's approximate 

formula, Eq. (5.19). 

 

Table 1 Cross-sectional Velocity Distribution at Ottawa in the Fox River, 

Illinois 

 

Station 
Y from left bank 

(ft) 

Depth, d 

(ft) 

Mean Velocity 

(ft/sec) 

1 0.00 0.0 0.00 

2 4.17 1.4 0.45 

3 7.83 3.0 0.68 

4 11.50 3.7 1.05 

5 15.70 4.7 0.98 

6 22.50 5.3 1.50 

7 29.83 6.2 1.65 

8 40.83 6.7 2.10 

9 55.50 7.0 1.80 

10 70.17 6.5 2.40 

11 84.83 6.3 2.55 

12 99.50 6.8 2.45 

13 114.17 7.4 2.20 

14 132.50 7.3 2.65 

15 150.83 7.1 2.70 
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16 169.16 7.4 2.35 

17 187.49 7.8 2.65 

18 205.82 7.8 2.80 

19 224.15 7.8 2.60 

20 242.48 6.6 2.50 

21 260.81 6.3 2.30 

22 279.14 6.2 2.35 

23 297.47 6.6 2.30 

24 315.80 6.0 2.65 

25 334.13 5.5 2.50 

26 352.46 5.4 2.10 

27 370.79 5.2 2.25 

28 389.12 5.5 2.30 

29 407.45 5.7 1.50 

30 416.62 3.2 1.30 

31 422.00 0.0 0.00 

 



Ch 5. Mixing in Rivers 

5-37 
 

5.2.2 Dispersion in Real Streams 

• Real streams have bends, sandbars, side pockets, pools and riffles, bridge piers, 

man-made revetments. 

→ These irregularities contribute to dispersion. 

5.2.2. 1 Limitation of Taylor's analysis 

 

 

A) generation of skewed distribution: '
2( ) 0.4

/ t

xx
uW ε

= <  ( initial period) 

B) decay of the skewed distribution: '0.4 1.0x< <  

C) approach to Gaussian distribution: '1.0 x<  

D) zone of linear growth of the variance: '0.2 x< ; 
2

2D
t
σ∂

=
∂

 

E) zone where use of the routing procedure is acceptable: '0.4 x<  
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5.2.2.2 Two-zone Models 

• Irregularities in real streams 

→ increase the length of the initial period 

→ produce long tail on the observed concentration distribution due to detention 

of small amounts of effluent cloud and release slowly after the main cloud has 

passed 

 

• Field studies 

Godfray and Frederick (1974) 

Nordin and Savol (1974) 

Day (1975) 

Legrand-Marcq and Laudelot (1985) 

 

→ nonlinear behavior of variance for times beyond the initial period (increased 

faster than linearly with time) 

( )2 1.4f tσ =  

 

→ skewed concentration distribution 

→ cannot apply Taylor's analysis 

 

• Effect of storage zones (dead zones) 

1) increase the length of the initial period 

2) increase the magnitude of the longitudinal dispersion coefficient 
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• Two zone models 

→ divide stream area into two zones 

 Flow zone:  advection, dispersion, reaction, mass exchange 

 F F F
F F F F

C C CA U A KA F
t x x y

⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 

 

 Storage zone:  vortex, dispersion, reaction, mass exchange 

 S
S

CA F
t

∂
= −

∂
 

 

→ introduce auxiliary equation for mass exchange term F 

 Exchange model:  ( )F SF k C C P= −  

 Diffusion model:  
0

S
y

y

CF
y

ε
=

∂
= −

∂
 

i) Dead zone model  

Hays et al (1967) 

Valentine and Wood (1977, 1979), Valentine (1978) 

Tsai and Holley (1979) 

Bencala and Waters (1983), Jackman et al (1984) 

 

ii) Storage zone model 

Seo (1990), Seo and Maxwell (1991, 1992) 

Seo and Yu (1993) 

Seo & Cheong (2001), Cheong & Seo (2003) 
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◆ Effect of bends 

1) increase the rate of transverse mixing 

→ reduce the dispersion coefficient to some extent 

2) transverse velocity profile induced by meandering flow increase longitudinal 

dispersion coefficient significantly 

(3) effect of alternating series of bends 

- depends on the ratio of the cross-sectional diffusion time to the time required 

for flow round the bend 

2 /
/

tW
L u

ε
γ =  

 

where L= length of the curve 

025γ γ≤ =  → no effect due to alternating direction 

0
025 K K γγ
γ

> → =  
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5.2.3 Estimating and Using the Dispersion Coefficient 

• Observation – calculation of observed values from field data 

• Prediction – estimation of dispersion coefficient by theoretical or empirical 

equations 

 

5.2.3.1 Observation of dispersion coefficient 

1) Change of moment method 

( ) ( )
2 2 2 2 2

2 1 2 1

2 1 2 12 2 2
x x t tUK

t t t t
σ σ σ σ− −

= =
− −

   

2
xσ = variance of C-x curve; 2

tσ = variance of C-t curve;  

1t = centroid of C-t curve at x=x1     

 

- difficult to compute a meaningful value of variance when concentration 

distributions are skewed. 

 

2) Routing procedure  

- proposed by Fischer (1968) 

 

 



Ch 5. Mixing in Rivers 

5-42 
 

→ match a downstream observation of passage of a tracer cloud to the 

prediction based on the upstream observation using an analytical solution 

→ can use this procedure only when 'x  >0.4 

• Predicted concentration distribution at downstream station is obtained 

according to the solution of one-dimensional Fickian dispersion model. 

2 2
2 1

2 1
2 1

2 1

( )
4 ( )

( , ) ( , )
4 ( )

p

u t t texp
K t t

C x t C x ud
K t t

τ

τ τ
π

∞

−∞

⎡ ⎤− − +
−⎢ ⎥−⎣ ⎦=

−∫   (5.20) 

 

where  

1t = mean time of passage at the upstream station (x1) 

2t = mean time of passage at downstream station (x2) 

τ = timelike variable of integration 

1( , )C x τ = upstream observed concentration-time curve 

 

→ Compare 2( , )pC x t  with 2( , )C x t  [= downstream observed concentration 

curve] until it fits together with varying dispersion coefficient K 

→ best fit value is regarded as the observed dispersion coefficient 
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5.2.3.2 Prediction of dispersion coefficient 

1) Theoretical equation 

' '

0 0 0

1 1W y y

t

K u d du dydydy
A dε

= − ∫ ∫ ∫      (5.16) 

a) Seo and Baek (2004) 

– use beta function for transverse profile of u-velocity 

1
1( ) (1 )

( ) ( )
u y y
U W W

α
βα β

α β

−
−Γ + ⎛ ⎞= −⎜ ⎟Γ Γ ⎝ ⎠

 

 
2 2

*

U WK
du

γ=  

 

2) Empirical equation 

a) Fischer (1975) 

'2 2
' Iu hK

E
=         (4.26) 

 

Select 0.07(0.054 ~ 0.10)I =  

( )0.7 0.5 ~ 1.0h W W=  

'2 20.2 (0.17 ~ 0.25)u u=  

*0.6tE duε= =  
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Then (4.26) becomes 
2 2

*0.01U WK
du

=        (5.19) 

 

b) Seo and Cheong (1998) 

- Dimensional analysis 

- include dispersion by shear flow dispersion and storage effects 

 

  * *

b cK U Wa
du u d

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

Fischer (1975):      a=0.011; b=2.0; c=2.0 

Liu (1979):       a=0.18; b=0.5; c=2.0 

Iwasa and Aya (1991):     a=2.0; b=0; c=1.5 

Koussis and Rodrguez-Mirasol (1998): a=0.6; b=0; c=2.0 

Seo and Cheong (1998):     a=5.92; b=1.43; c=0.62 
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[Ex 5.5]  Dispersion of slug                                        

Given : 

10M lb= (Rhodamine WT dye); 0.90 /u ft s= ; 73W ft= ; 338.6A =  

4.46d ft= , (weighted average), * 0.072 /u ft s=  

20.133 /t ft sε = ; 
( )

0.133 0.072
0.4 0.4 4.64

t

d
ε

= =  

 

Find : 

(a) K by Eq. (5.19) 

(b) length of initial zone in which Taylor's analysis does not apply 

(c) length of dye cloud at the time that peak passes =20,000ft 

(d) peakC at x =20,000ft 

 

[Solution] 

(a) Fischer (1975) - Eq. (5.19) 
2 2 *0.011 /K u W du=  

( ) ( ) ( )( )2 20.011 0.90 73 / 4.46 0.072=  

2142.1 /ft s=  

 

( ) ( )5.19 / 5.16 142.1/ 77.5 1.83K K = =  

 

[Cf]  K by Seo & Cheong (1998) 

 
1.43 0.62

* *5.92K U W
du u d

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 2294 /K ft s=  

→ include dispersion by shear flow dispersion and storage effects 
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(b) initial period 

( )( ) ( )220.4 / 0.4 0.90 73 / 0.133 14,424tx uW ftε= = =  

 

(c)length of cloud 

( )( )
( )( )

' 2
2

20,000 0.133
/ 0.55

0.90 73tx x uWε= = =  

- decay of skewed concentration distribution 

→ assume Gaussian distribution 

 
2

2d K
dt
σ

=  

 

From Fig.5.14  

 ( )
2

'
2 0.07

2
t x

KW
σ ε

= −  

 

2 2 '2 ( / )( 0.07)tK W xσ ε∴ = −  

( )( ) ( )2 6 22 142 73 / 0.133 0.55 0.07 5.46 10 ft−= − = ×  

2.337σ∴ =  

 

length of cloud 4 4(2,337) 9,348 ftσ= = =  

 

(d) peak concentration 

( ) ( )( ) ( )
6 3

max
10 4.69 10 /

4 / 338.6 4 142 20,000 / 0.90
MC lb ft

A Kx uπ π
−= = = ×

6 3 3
3

453.64.69 10 75.1 10 / ( / )
0.0283

g g m mg l ppm
m

− −= × × = × = =  

75.1ppb=  
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Homework Assignment #5-2 

Due: Two weeks from today 

 

Concentration-time data listed in Table 2 are obtained from dispersion study by 

Godfrey and Fredrick (1970). 

1) Plot concentration vs time 

2) Calculate time to centroid, variance, skew coefficient. 

3) Calculate dispersion coefficient using the change of moment method and 

routing procedure. 

4) Compare and discuss the results. 

Test reach of the stream is straight and necessary data for the calculation of 

dispersion coefficient are 

1.70 / ; 60 ;u ft s W ft= =  

*2.77 ; 0.33 /d ft u ft s= =  

Table-2 Time-concentration data for Copper Creek, Virginia 

Section 1 

x=630ft 

Section 2 

x =3310ft 

Section 3 

x =5670ft 

Section 4 

x =7870ft 

Section 5 

x =11000ft

Section 6 

x =13550ft 

T (hr) C/C0 T (hr) C/C0 T (hr) C/C0 T (hr) C/C0 T (hr) C/C0 T (hr) C/C0 

1111.5 0.00 1125.0 0.00 1138.0 0.00 1149.0 0.00 1210.0 0.00 1226.0 0.00 

1112.5 2.00 1126.0 0.15 1139.0 0.12 1152.0 0.26 1215.0 0.05 1231.0 0.07 

1112.5 16.50 1127.0 1.13 1140.0 0.30 1155.0 0.67 1220.0 0.25 1236.0 0.22 

1113.0 13.45 1128.0 2.30 1143.0 1.21 1158.0 0.95 1225.0 0.52 1241.0 0.40 
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1113.5 7.26 1128.5 2.74 1145.0 1.61 1200.0 1.09 1228.0 0.64 1245.0 0.50 

1114.0 5.29 1129.0 2.91 1147.0 1.64 1202.0 1.13 1231.0 0.70 1249.0 0.58 

1115.0 3.37 1129.5 2.91 1149.0 1.56 1204.0 1.10 1234.0 0.72 1251.0 0.59 

1116.0 2.29 1130.0 2.80 1153.0 1.26 1206.0 1.04 1237.0 0.71 1253.0 0.59 

1117.0 1.54 1131.0 2.59 1158.0 0.86 1208.0 0.95 1240.0 0.65 1257.0 0.54 

1118.0 1.03 1133.0 2.18 1203.0 0.53 1213.0 0.72 1244.0 0.55 1304.0 0.44 

1120.0 0.40 1137.0 1.34 1208.0 0.30 1218.0 0.50 1248.0 0.45 1313.0 0.27 

1124.0 0.10 1143.0 0.60 1213.0 0.17 1223.0 0.31 1258.0 0.24 1323.0 0.14 

1128.0 0.04 1149.0 0.23 1218.0 0.10 1228.0 0.21 1308.0 0.12 1333.0 0.06 

1133.0 0.02 1158.0 0.08 1228.0 0.04 1238.0 0.08 1318.0 0.06 1343.0 0.03 

1138.0 0.00 1208.0 0.03 1238.0 0.01 1248.0 0.02 1333.0 0.03 1403.0 0.02 

- - 1218.0 0.00 1248.0 0.00 1300.0 0.00 1353.0 0.00 1423.0 0.00 

 


