3 Vector Space, Linear Independence

3.1 Vector Space

Definition. Vector Space : a nonempty set V of vectors such that with any two vectors

 $a, b \in V,$

all their linear combinations $c_1a + c_2b \in V$ (c_1, c_2 : any real numbers), and all these vectors obey the following rules.

- (a) a + b = b + a.
- (b) (a+b) + c = a + (b+c) = a + b + c.
- (c) There is a unique zero vector such that a + 0 = a for all a.
- (d) For each a, there is a unique vector-a such that a + (-a) = 0.
- (e) 1a = a.
- (f) $c_1(c_2a) = (c_1c_2)a = c_1c_2a$.
- (g) $c_1(a+b) = c_1a + c_1b$.
- (h) $(c_1 + c_2)a = c_1a + c_2a$.

Example 1. \mathbb{R}^n , The vector space that consists only of a zero vector, the vector space of all real n by n matrices, ...

Definition. Subspace of a vector space is a set of vectors (including 0) that satisfies the following:

If v and w are vectors in the subspace and c is any scalar, then v + w, cv is in the subspace.

Example 2. three-dimensional space \mathbb{R}^3 .

- A plane through (0,0,0) is a subspace of the full vector space \mathbb{R}^3 .
- A line through (0,0,0)
- The single vector (0,0,0)
- The whole space \mathbb{R}^3

Definition. Column space of a matrix A : C(A)

- = all linear combinations of the columns
- = span of the columns

Note

- The combinations are all possible vectors Ax.
- To solve Ax = b, b needs to be a combination of the columns.

 $\therefore Ax = b$ is solvable iff $b \in C(A)$

• If A is m-by-n, columns belong to \mathbb{R}^m .

 $\therefore C(A)$ is a subspace of \mathbb{R}^m .

Example 3.

$$A = \begin{bmatrix} 1 & 0 \\ 4 & 3 \\ 2 & 3 \end{bmatrix} \qquad Ax = x_1 \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}$$

 $C(A) = \text{plane in } \mathbb{R}^3.$

• Ax = b is solvable when b is on that plane.

•
$$\begin{bmatrix} 0\\0\\0 \end{bmatrix}$$
 is in $C(A)$ $\therefore Ax = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$ solvable.

Example 4. In \mathbb{R}^2 ,

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix}$$

•
$$C(I) = \mathbb{R}^2$$
 $(Ix = b \text{ always solvable })$
• $C(A) = \text{all linear combinations of } c_1 \begin{bmatrix} 1\\2 \end{bmatrix} + c_2 \begin{bmatrix} 2\\4 \end{bmatrix}$
 $= c_0 \begin{bmatrix} 1\\2 \end{bmatrix}$ $(c_0 \in \mathbb{R})$
 $\therefore C(A) \text{ is only a line.}$
 $(Ax = b \text{ solvable only when } b \text{ is on the line.})$
• $C(B) = \mathbb{R}^2$ (every b is attainable)

But
$$Bx = b = \begin{bmatrix} 5\\4 \end{bmatrix}$$
 has multiple solutions.
(2 eqns, 3 unknowns)

Definition. Row space of a matrix A : R(A)

= all linear combinations of the rows

= span of the rows

- If A is m-by-n, rows belong to \mathbb{R}^n .
 - \therefore The row space is a subspace of \mathbb{R}^n .

Note

• The row space of $A = C(A^T)$

Definition. Null space of a matrix A : N(A)

= all solutions to Ax = 0

• If A is m-by-n, the solution vectors x are in \mathbb{R}^n .

 $\therefore N(A)$ is a subspace of \mathbb{R}^n .

• Consider Ax = b.

If $b \neq 0$, then the solutions do not form a subspace.

(:: x = 0 is only a solution if b = 0.)

Example 5.

$$A = [1 \ 2 \ 3]$$

• N(A) is the plane through the origin

•
$$s_1 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$$
 and $s_2 = \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$ lie on the plane
 $x + 2y + 3z = 0$

All vectors on the plane are combinations of s_1 and s_2 .

Example 6. $A = \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix}$ $\Rightarrow U = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$: all columns have pivots. A is invertible. $N(A) = \{(0,0)\}$ Example 7. $B = \begin{bmatrix} A \\ 2A \end{bmatrix}$ Extra rows impose more conditions on the vectors x in the null space. $N(B) = \{(0,0)\}$

Example 8. $C = \begin{bmatrix} A & 2A \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 3 & 8 & 6 & 16 \end{bmatrix}$

Now the solution vector x has 4 components.

$$\implies U = \underbrace{\begin{bmatrix} 1 & 2 & 2 & 4 \\ 0 & 2 & 0 & 4 \end{bmatrix}}_{\text{pivot cols free cols}}$$
$$\implies R = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix} \text{ (reduced row echelon form)}$$
Special solutions to $Rr = 0$:

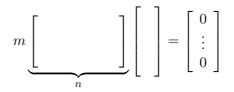
 $s_1 = \begin{bmatrix} -2\\0\\1\\0 \end{bmatrix}, \qquad s_2 = \begin{bmatrix} 0\\-2\\0\\1 \end{bmatrix}$

(The free variables x_3 , x_4 can be given any values whatsoever. Then the pivot variables x_1 , x_2 can be found by back substitution.)

All solutions are linear combination of s_1 and s_2 .

Note

• If A has more columns than rows, then Ax = 0 has more unknowns than equations, and it has nonzero solutions. (There must be free columns without pivots.)



•
$$N(A) = N(U) = N(R)$$

3.2 Linear Independence

Definition. Vectors $\vec{v}_1, \dots, \vec{v}_n$ are linearly independent

if $x_1\vec{v}_1 + \cdots + x_n\vec{v}_n = 0$ only happens when all x's are zero.

(If a combination is 0 when the x's are not all zero, the vectors are dependent.)

- The columns of A are linear independent when the only solution to $A\vec{x} = 0$ is $\vec{x} = 0$.
- The columns of $A \in \mathbb{R}^{m \times n}$ are linear independent when the rank is r = n.
 - n pivots and no free variables.
 - only $\vec{x} = 0$ is in the nullspace.
- Any set of n vectors in \mathbb{R}^n must be linearly dependent if n > m.
- **Definition.** A basis for a vector space is a set of linearly independent vectors that span the space.
 - v_1, \dots, v_n are a basis for \mathbb{R}^n exactly when they are the columns of an $n \times n$ invertible matrix.
 - Q. Given m vectors in \mathbb{R}^n , how do you find a basis for the space they span ?

$$m \begin{bmatrix} - & v_1 & - \\ - & v_2 & - \\ - & \dots & - \\ - & v_n & - \end{bmatrix}$$

$$\Downarrow$$

eliminate to find the nonzero rows. or, put them in columns \implies find pivot columns.