Soil Mechanics Lecture #3

1/5

Soil classification

- O Particle size analysis
- Sieve analysis/ Hydrometer analysis
 - O Atterberg limit tests
- Plasticity to be known
 - O Sieve analysis (Table 1.2 : Sieve openings)
- 100mm,, 6,3mm, No 4,, No. 200,
 - O Hydrometer analysis (Stoke's law)
- $-v = \frac{y}{t} = \frac{\mathbb{V}_s \mathbb{V}_w}{18n} D^2, \quad D = \sqrt{\frac{18nv}{\mathbb{V}_s \mathbb{V}_w}} \qquad \qquad \text{Brownian} \atop \text{movement} \leftarrow 0.0002 \text{mm}^\circ 0.2 \text{mm} \quad \rightarrow \quad \text{Excessive} \atop \text{turbulence}$
 - Particle size ranges (Table 1.1 / 보충자료 1)
- Gravel Sand Silt Clay Collodial particle
 (4,75mm) (0,075mm) (0,002mm) (0,001mm)
 - O Simple tests: water content/specific gravity

-water content:
$$w = \frac{W_{uv}}{W_v} \times 100$$
 (%)

-specific gravity:
$$G_{\rm s} = \frac{W_1}{W_1 + W_2 - W_3} = \frac{W_{\rm soil\ patiole}}{W_{\rm toater\ at\ 4C}}$$

Soil Mechanics

2/5

Lecture #3

- O Gradation Curve (Sieve Analysis + hydrometer)
- Calculations
 - ① Percentage retained on any sieve = $\frac{wt.\ of\ soil\ retained}{total\ wt.\ of\ soil} \times 100$
 - ② Cumulate percentages retained = sum of % retained on all coarser sieves
 - ③Percentage finer than any sieve size = 100-05

- D_{10} : Effective grain size
- C_u : Coefficient of uniformity (= D_{e0}/D_{10})
- C_c : Coefficient of curvature (= $D_{30}^2/(D_{60}D_{10})$)
- well-graded vs. poorly-graded soils

Soil Mechanics

Lecture #3

- Atterberg limit tests: Liquid/ Plastic/ Shrinkage
- Plasticity: the ability of a soil to undergo unrecoverable deformation at constant volume without cracking and crumbling
- Liquid Limit (LL, w_l) : the water content at which a soil is practically liquid but possess a certain small shearing strength
- Plastic Limit (PL, w_v) : the smallest water content at which a soil is plastic
- Shrinkage Limit (SL, w_s) : the smallest water content that can occur in a clay sample which is completely saturated

$$w_{\rm s}\!=\!\frac{\gamma_{\!\scriptscriptstyle \rm W} V}{W_{\!\scriptscriptstyle \rm S}}\!\!-\!\frac{G_{\!\scriptscriptstyle \rm W}}{G_{\!\scriptscriptstyle \rm S}}\,(\!=\!\frac{W_{\!\scriptscriptstyle \rm W}}{W_{\!\scriptscriptstyle \rm S}}$$
 at Shrinkage limit)

 $v_{\omega} = Unit$ weight of water

 $W_{s} =$ Weight of dry soil pat

V= Volume of dry soil pat

 G_{ω} = Specific gravity of water at the temperature of test

 $G_s =$ Specific gravity of soil grains

3/5

Soil Mechanics

4/5

O Indices : plasticity index, liquidity index, flow index, activity

- Plasticity Index : $(P_{I\!\!P} \; I_{I\!\!P}) (= w_l - w_p)$

The range of water content between the liquid and plastic limits, which is an important measure of plastic behaviour

- Liquidity Index :
$$(I_L = \frac{w - w_p}{I_p})$$

Represents the natural water content of a soil relative to the liquid and plastic limit

- Flow Index: (I_f)

Expresses the relationship between the change in water content and the $_{w(\%)}$ corresponding change in the shear strength, i.e., the slope of the flow curve

no, of blows(log scale)

- Activity : (I_a)

(Plasticity index/percentage of clay size fraction) expresses the degree of plasticity of the clay size fraction of a soil

Minerals	Activities
Kaolinite	0,40
Illite	0,90
Montmorillonite	> 1.25

Soil Mechanics Lecture #3

5/5

○ Soil classification (Table 1.5 - 보조자료1 / 보충자료2)

- Primary letter Secondary letter

(Particle Size) (Gradation/Plasticity)

G: Gravel W: Well-graded

S : Sand P : Poorly-graded

M : Silt M : Non-plastic fines

C: Clay C: Plastic fines

O: Organic L: Low plasticity (LL<50)
Pt: Peat H: High plasticity (LL>50)

- O Field identification procedures for fine grained soils
- Dilatancy(reaction to shaking) test Determine characteristics of fine particles

Fine sands → Silts → Clays

- Dry strength(crushing characteristics) test Determine Characteristics
 and percentage of colloidal fraction
 CH → Silts → Fine sands
- Toughness(consistency near plastic limit) test Determine Types of clay minerals, organic soils(weak, spongy)

Kaolinite - cohesiveness reduced quickly when $w < w_p$