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8 Symmetric Matrices

8.1 Properties of Symmetric matrix

We know that an n×n symmetric matrix A has only real eigenvalues

(A− λI︸ ︷︷ ︸
real

)x = 0 ,

so the eigenvectors are also real. They are, in fact, perpendicular.

Example .

(symmetric)

· A=
[

5 3
3 5

]
has an orthonormal basis of eigenvectors 1√

2

[
1
1

]
, 1√

2

[
1
−1

]

→ λ1 = 8 → λ2 = 2

· A=
[

1 1
1 1

]
has an orthonormal basis of eigenvectors

[
1
0

]
,

[
0
1

]

→ λ1,2 = 1
(Not symmetric)

· A=
[

1 1
0 1

]
has only one eigenvector

[
c
0

]

Theorem An n×n real symmetric matrix has an orthonormal basis of eigenvec-
tor for Rn. ~w

xt
i xj =

{
1 if i = j
0 if i 6= j

Partial Proof (Eigenvectors of a real sym.matrix corresponding to different eigenvalues are
perpendicular) :

Let Ax = λ1x, Ay = λ2y, λ1 6= λ2, A = At.
Then (λ1x)ty = (Ax)ty = xtAty = xtAy = xtλ2y

q q
λ1xty λ2xty.

λ1 6= λ2 ⇒ xty = 0. ]

Recall Diagonalization A = XΛX−1

For a symmetric matrix A, construct X using n orthonormal eigenvectors.
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Then

XtX =



−− xt

1 −−
...

−− xt
n −−







| |
x1 · · · xn

| |


 =




1 0 · · · 0
. . .

1


 = I.

∴ X−1 = Xt .

Theorem [Spectral Theorem or Principal Axis Theorem]
Every symmetric matrix has the factorization A = XΛXt with real eigenvalues

in Λ and orthonormal eigenvectors in X.

Consider a quadratic form :
q = xtXΛXtx

Set y = Xtx. Then x = Xy, and xtX = yt

∴ q = ytΛy =
n∑

i=1

λiy
2
i ← (This is called the principal axis form)

Example . Find the axes of the tilted ellipse

5x2
1 + 8x1x2 + 5x2

2 = 1

q
q = xtAx where A =

[
5 4
4 5

]

The eigenvalues of A :

λ1 = 9, λ2 = 1 ⇒ Λ =
[

9
1

]

Corresponding eigenvectors :

1√
2

[
1
1

]
,

1√
2

[
1
−1

]
⇒ X =

1√
2

[
1 1
1 −1

]

Set

y = Xtx =
1√
2

[
1 1
1 −1

] [
x1

x2

]
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⇒ y1 =
1√
2
(x1 + x2), y2 =

1√
2
(x1 − x2)

And

q = 9
(

x1 + x2√
2

)2

+
(

x1 − x2√
2

)2

= λ1y
2
1 + λ2y

2
2

y2

y1

Q′ • 1√
λ2

= 1

P ′

1√
λ1

= 1
3

•
-

¾

x = Xy

y = XT x

y1 = 1√
2
(x1 + x2)

y2 = 1√
2
(x1 − x2)

x2

x1¡
¡¡µ

@
@

@
@

@
@R

³³³³³³³³³³reflection
•P ( 1

3
√

2
, 1

3
√

2
)

Q ( 1√
2
,− 1√

2
)

•

The axes of the tilted ellipse point
along the eigenvectors of A.

This example shows why the previous theorem is called the principal axis theorem.

8.2 Positive Definite Matrices

Note In the above example, for any nonzero vector x =
[

x1

x2

]
,

q = xtAx = λ1y
2
1 + λ2y

2
2 > 0

Such a matrix A is called positive definite. (Strang, page331)

Definition A symmetric matrix A is positive definite
if xtAx > 0 for every nonzero vector x.
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Recall q = xtAx =
∑n

i=1 y2
i λi where λ1, · · · , λn are eigenvalues of A.

· Suppose that λk ≤ 0. Then for y =




0
...
0
1
0
...
0




← kth,

q = λk ≤ 0. Thus, there exists a nonzero vector x = Xy s.t. q ≤ 0.
· If all λi >, then q > 0 for every nonzero x.

Therefore we have the following theorem :
Theorem A : n×n symmetric matrix. Then,

All n eigenvalues are positive
m

xtAx > 0 except at x = 0 (A is positive definite).

2×2 case A =
[

a b
b c

]
, when is A positive definite?

|A− λI| = (a− λ)(c− λ)− b2 = λ2 − (a + c)λ + ac− b2 = 0

· If λ1, λ2 > 0,
λ1 + λ2 = a + c > 0
λ1λ2 = ac− b2 > 0

If a > 0 and c ≤ 0, then ac− b2 ≤ 0
If a ≤ 0 and c > 0, then ac− b2 ≤ 0
Therefore, we have a > 0, c > 0 and ac− b2 > 0

· Now, suppose a > 0 and ac− b2 > 0
1×1 upperleft 2×2 determinant

determinant

This forces c > 0
⇒ λ1 + λ2 > 0, λ1λ2 > 0

∴ λ1, λ2 > 0

· xtAx = [x1 x2]
[

a b
b c

] [
x1

x2

]

= ax2
1 + 2bx1x2 + cx2

2

= a

(
x1 +

b

a
x2

)2

+
(

ac− b2

a

)
x2

2
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=
[
x1 +

b

a
x2 x2

] [
a

ac−b2

a

] [
x1 + b

ax2

x2

]

= [x1 x2]
[

1 0
b
a 1

] [
a

ac−b2

a

] [
1 b

a
0 1

] [
x1

x2

]

= xtLDLtx

Recall the factorization of a symmetric matrix A = LDLt

D contains the diagonal elements of the upper triangular matrix, and they are pivots!

Â first pivot (if a > 0)[
a b
b c

]
−→

[
a b
0 c− b

ab

]

second pivot
Thus, xtAx > 0 except at x = 0 mean positive pivots and vice versa.

The above analysis holds for n×n symmetric matrices.

Theorem For an n×n symmetric matrix A, the following are equivalent.

1. All n eigenvalues are positive.
2. All n upperleft determinants are positive.
3. All n pivots are positive.
4. xtAx > 0 except at x = 0. (A is positive definite)

· Suppose A is positive definite. Then,
(i) xtAx = 1 is an ellipse. (xtAx = ytΛy = 1)
(ii) the quadratic function f(x) = xtAx has a minimum at x = 0.

x2

x1¡
¡¡µ
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•
1√
λ1

1√
λ2

•

direction of x1

direction of x2
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