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25 Cauchy’s Integral Formula, Derivatives of Analytic Func-
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25.1 Independence of Path

Theorem 2 (Independence of path)
If f(z) is analytic in a simply connected domain D, then the integral of f(z) is independent
of path in D.

Principle of Deformation of Path.
Hence we may impose a continuous deformation of the path of an integral, keeping the ends
fixed. As long as our deforming path always contains only points at which f(z) is analytic,
the integral retains the same value. This is called the principle of path.

Theorem 3 (Existence of an infinite integral)
If f(z) is analytic in a simply connected domain D, then there exists an indefinite integral
F (z) of f(z) in D-thus, F ′(z) = f(z)- which is analytic in D, and for al paths in D joining
any two points z0 and z1 in D, the integral of f(z) from z0 to z1 can be evaluated by

∫ z1

z0

f(z)dz = F (z1)− F (z0). [F ′(z) = f(z)]

proof) If f(z) is analytic in a simply connected domain D, then the integral of f(z) is
independent of path in D

F (z) =
∫ z1

z0

f(z∗)dz∗,

which is uniquely determined. We show that this F (z) is analytic in D and F ′(z) = f(z)

F (z + ∆z)− F (z)
∆z

=
1

∆z

[∫ z+∆z

z0

f(z∗)dz∗ −
∫ z

z0

f(z∗)dz∗
]

=
1

∆z

∫ z+∆z

z
f(z∗)dz∗

(4)− f(z) :
F (z + ∆z)− F (z)

∆z
− f(z) =

1
∆z

∫ z+∆z

z
f(z∗)dz∗ − f(z) −−− a)

Show that R.H.S approaches zero as ∆z → 0
f(z) is a constant because z is kept fixed

∫ z+∆z

z
f(z)dz∗ = f(z)

∫ z+∆z

z
dz∗ = f(z)∆z.
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Thus f(z) =
1

∆z

∫ z+∆z

z
f(z)dz∗ −−− b)

b) → a)
F (z + ∆z)− F (z)

∆z
− f(z) =

1
∆z

∫ z+∆z

z
[f(z∗)− f(z)]dz∗

Since f(z) is analytic, it is continuous. An ε > 0 being given, we can thus find a δ > 0
such that |f(z∗) − f(z)| < ε when |z∗ − z| < δ. Hence, letting |∆z| < δ, we see that the
ML-inequality yields

∣∣∣∣
F (z + ∆z)− F (z)

∆z
− f(z)

∣∣∣∣ =
1

∆z

∣∣∣∣
∫ z+∆z

z
[f(z∗)− f(z)]dz∗

∣∣∣∣ ≤
1
|∆z|ε|∆z| = ε.

By the definition of limit and derivative,

F ′(z) = lim
∆z→0

F (+∆z)− f(z)
∆z

= f(z)

Since z is any point in D, this implies that F (z) is analytic in D and is an indefinite integral
on antiderivative of f(z) in D, written

F (z) =
∫

f(z)dz

Also of G′(z) = f(z), then F ′(z)−G′(z) ≡ 0 in D : hence F (z)−G(z) is constant in D. Two
indefinite integrals of f(z) can differ only by a constant. This proves theorem.

Cauchy’s Theorem for Multiply Connected Domains.
For a doubly connected domain D

∫

c1

f(z)dz =
∫

c2

f(z)dz

Proof)

D1 :
∫

c10

f(z)dz +
∫

c̃2

f(z)dz +
∫

c∗2
f(z)dz +

∫

c̃2

f(z)dz = 0 −−− 1)

since f(z) is analytic in D1

D2 :
∫ ∗

1
f(z)dz −

∫

c̃2

f(z)dz +
∫

c20

f(z)dz −
∫

c̃1

f(z)dz = 0 −−− 2)

1) + 2);
∫

z10

f(z)dz +
∫

c1∗
f(z)dz +

∫

c2∗
f(z)dz +

∫

c20

f(z)dz = 0

C10 + C1∗ = C1(ccw), C2∗ + C20 = C2(cw)
∫

c1

f(z)dz −
∫

c2

f(z)dz = 0 in both ccw.
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∴
∫

c1

f(z)dz =
∫

c2

f(z)dz.

Example A basic result : Integral of integer power.
∮

(z − z0)mdz =
{

2πi (m = −1)
0 (m 6= −1 and integer)

for ccw integration around any simple closed path containing z0 in its interior.

25.2 Cauchy’s Integral Formula

Theorem 1 (Cauchy’s integral formula).
Let f(z) be analytic in a simply connected domain D. Then for any point z0 in D and any
simple closed path C in D that encloses z0,
(1) ∮

c

f(z)
z − z0

dz = 2πif(z0) (Cauchy’s integral formula)

the integration being taken ccw.
(1∗)

f(z0) =
1

2πi

∮

c

f(z)
z − z0

dz (Cauchy’s integral formula)

Proof)
f(z) = f(z0) + [f(z)− f(z0)]

(2) ∮

c

f(z)
z − z0

dz = f(z0)
∮

c

dz

z − z0
+

∮

c

f(z)− f(z0)
z − z0

dz

∮
dz

z − z0
= 2πi (Example 6 in sec.13.2)

1st term on the R.H.S
∴ f(z0)

∮

c

dz

z − z0
= 2πif(z0)

C is replaced by a small circle k of radius ρ by the principle of deformation of path . Hence
an ε > 0 being given, we can find a δ > 0 such that |f(z) − f(z0)| < ε for all z in the disk
|z − z0| < δ.

∴
∣∣∣∣
f(z)− f(z0)

z − z0

∣∣∣∣ <
ε

ρ

By the ML-inequality, ∣∣∣∣
∮

k

f(z)− f(z0)
z − z0

dz

∣∣∣∣ <
ε

ρ
2πρ = 2πε

Since ε(> 0) can be chosen arbitrarily small, it follows that the above integral must have the
value zero.
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Example 1 Cauchy’s integral formula.
∮

c

ez

z − 2
dz = 2πiez|z=2 = 2πie2 ≈ 46.4268i

for any contour enclosing z0 = 2.

Example 2 Cauchy’s integral formula.

∮

c

z3 − 6
2z − i

dz =
∮

c

1
2z3 − 3
z − i

2

dz − 2πi(
1
2
z3 − 3)|z=i/2 = π/8− 6πi (z0 = i/2 inside C)

Example 3 Integration around different contours.

g(z) =
z2 + 1
z2 − 1

=
z2 + 1

(z − 1)(z + 1)

Solution)
(a) circle |z − 1| = 1, encloses z0 = 1

g(z) =
z2 + 1
z2 − 1

=
z2 + 1
z + 1

· 1
z − 1

; f(z) =
z2 + 1
z + 1

(b) gives the same as (a) by the principle of deformation of path
(c) z0 = −1

g(z) =
z2 + 1
z − 1

· 1
z + 1

: thus f(z) =
z2 + 1
z − 1

(d) 0. g(z) is analytic

Example 4 use of partial fractions.

g(z) =
tan z

z2 − 1
: the circle C : |z| = 3/2 (ccw)

Solution) tan z is not analytic at±π/2,±3π/2, · · · , but all these points lie outside the contour.

(z2 − 1)−1 = 1/(z − 1)(z + 1) is not analytic at 1 and -1

1
z2 − 1

=
1
2

(
1

z − 1
− 1

z + 1

)

∮
tan z

z2 − 1
dz =

1
2

[∮
tan z

z − 1
dz −

∮
tan z

z + 1
dz

]

=
1πi

2
[tan 1− tan(−1)] = 2πi tan 1 ≈ 9.785i
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Multiply connected domain.
For instance, if f(z) is analytic on C1 and C2 and in the ring-shaped domain bounded by C1

and C2 and z0 is any point in that domain, then
(3)

f(z0) =
1

2πi

∮

c1

f(z)
z − z0

dz +
1

2πi

∮

c2

f(z)
z − z0

dz,

where the outer integral C1 is taken ccw and the inner clockwise.

25.3 Derivatives of Analytic Functions.

Theorem 1 (Derivatives of an analytic function)
If f(z) is analytic in a domain D, then it has derivatives of all orders in D, which are then
also analytic functions in D. The values of derivatives at a point z0 in D are given by the
formulas
(1’)

f ′(z0) =
1

2πi

∮

c

f(z)
(z − z0)2

dz,

(1”)

f ′′(z0) =
2

2πi

∮

c

f(z)
(z − z0

3

dz,

and in general
(1)

f (n)(z0) =
n!
2πi

∮

c

f(z)
(z − z0)n+1

dz (n = 1, 2, · · · );
here C is any simple closed path in D that encloses z0 and whose full interior belongs to D.
proof)

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)
∆z

By Cauchy’s integral formula ;

f(z0 + ∆z)− f(z0)
∆z

=
1

2πi∆z

[∮
f(z)

z − (z0 + ∆z)
dz −

∮
f(z)

z − z0
dz

]

=
1

2πi∆z

∮
f(z){z − z0 − [z − (z0 + ∆z)]}

[z − (z0 + ∆z)][z − z0]
dz

f(z0 + ∆z)− f(z0)
∆z

=
1

2πi

∮
f(z)

(z − z0 −∆z)(z − z0)
dz

We consider the difference between these two integrals.
∮

c

f(z)
(z − z0 −∆z)(z − z0)

dz −
∮

c

f(z)
(z − z0)2

dz =
∮

c

f(z)[z − z0 − (z − z0 −∆z)]
(z − z0 −∆z)(z − z0)2

dz

=
∮

f(z)∆z

(z − z0 −∆z)(z − z0)2
dz
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Being analytic, the function f(z) is continuous on C, hence bounded in absolute value,
|f(z) ≤ K, Let d be the smallest distance from z0 to the points of C.

|z − z0|2 ≥ d2, hence
1

|z − z0|2 ≤
1
d2

By the triangle inequality,

d ≤ |z − z0| = |z − z0 −∆z + ∆z| ≤ |z − z0 −∆z|+ |∆z|

let |∆z| ≤ d/2, so that −|∆z| ≥ −d/2
∣∣∣∣
∮

c

f(z)∆z

(z − z0 −∆z)(z − z0)2
dz

∣∣∣∣ ≤ KL|∆z| · 1
d
· 1
d2

This approaches zero as ∆z → 0

Example 1 Evaluation of line integrals.
for any contour enclosing the point πi (ccw)

∮

c

cos z

(z − πi)2
dz = 2πi(cos z)′|z=πi = −2πi sinπi = 2π sinhπ

Example 2 for any contour enclosing the point −i (ccw)
∮

c

z4 − 3z2 + 6
(z + i)3

dz = πi(z4 − 3z2 + 6)′′|z=−i = πi(4z3 − 6z)′|z=−i

= πi(12z2 − 6)|z=−i = πi(−12− 6) = −18πi

Example 3 for any contour for which 1 lies inside and ±2i lie outside (ccw)
∮

ez

(z − 1)2(z2 + 4)
dz = 2πi

(
ez

z2 + 4

)′∣∣∣∣
z=1

= 2πi
ez(z2 + 4)− ez(2z)

(z2 + 4)2

∣∣∣∣
z=1

= 2πi
e(5)− e(2)

25
=

6eπ

25
i ≈ 2.050i

25.4 Cauchy’s Inequality. Liouville’s and Morera’s Theorems.

Choose for C a circle of radius r and center z0 with |f(z)| ≤ M on C

|f (n)(z0)| = n!
2π

∣∣∣∣
∮

f(z)
(z − z0)n+1

dz

∣∣∣∣ ≤
n!
2π

M · 1
rn+1

2πr

(2)

|f (n)(z0)| ≤ n!M
rn

: Cauchy’s inequality

Theorem 2 Liouville’s theorem
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If an entire function f(z) is bounded in absolute value for all z, then f(z) must be a constant.
proof) By assumption, |f(z)| is bounded, say, |f(z)| < k for all z. Using Cauchy’s inequality,
|f ′(z0)| < k/r. Since f(z) is entire, this is true for every r, so that we can take r as large as
we please and conclude that f ′(z0) = 0. Since z0 is arbitrary, f ′(z) = 0 for all z, and f(z) is
constant.

Theorem 3 Morera’s theorem (Converse of Cauchy’s integral theorem)
If f(z) is continuous in a simply connected domain D and if

∮

c
f(z)dz = 0

for every closed path in D, then f(z) is analytic in D.
proof) If f(z) is analytic in D, then

F (z) =
∫ z

z0

f(z∗)dz∗

is analytic in D and F ′(z) = f(z). In the proof we used only the continuity of f(z) and the
property that its integral around every closed path in D is zero ; from these assumptions we
conclude that F (z) is analytic. By theorem 1, the derivative of F (z) is analytic, that is f(z)
is analytic in D.
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