26 Series, Convergence Tests

• Complex Series / Convergence Tests:

Very similar to real series / convergence tests.

• Sequence $\{Z_n\}$ Converges to C, i.e.

$$\lim_{n \to \infty} Z_n = C \qquad (\text{or}, Z_n \to \mathbf{C})$$

if for every $\varepsilon > 0$, We can find N such that,

 $|Z_n - \mathbf{C}| < \varepsilon$ for all n > N.

Theorem

 $Z_n = x_n + iy_n (n=1,2,3,\dots) \rightarrow C = a + ib$

if $x_n \to a$ and $y_n \to b$ • Series $\sum_{m=1}^{\infty} Z_m$

 n_{th} partial Sum $S_n = \sum_{m=1}^n Z_m$. Reminder after the term Z_n : $R_n = Z_{n+1} + Z_{n+2} + \dots$

• Convergent Series: Partial sum converges. i.e.

$$\lim_{n \to \infty} S_n = S = \sum_{m=1}^n Z_m$$
(then, $R_n \to 0$)

Theorem

if
$$Z_1 + Z_2 + \dots$$
 converges, then $\lim_{m \to \infty} Z_m = 0$

(if $\lim_{m \to \infty} Z_m \neq 0$, then the series diverges)

Question. Is $Z_m \rightarrow 0$, sufficient for convergence of the series ?

Theorem

$$Z_1 + Z_2 + \dots$$
 convergent if for every given $\varepsilon > 0$.

We can find N (may depend on ε) such that,

 $|Z_{n+1} + Z_{n+2} + \dots + Z_{n+p}| < \varepsilon$ for every n > N and $p = 1,2,3,\dots$ (Cauchy's Convergence principle).

• $Z_1 + Z_2 + \dots$ absolutely convergent,

if
$$\sum_{m=1}^{\infty} |Z_m|$$
 Convergent.

• Conditionally Convergent if $Z_1 + Z_2 + \dots$ converges,

but $|Z_1| + |Z_2| +$ is divergent.

• Absolute Convergent \implies Convergent.

Theorem (Comparison Test)

- $Z_1 + Z_2 + \dots$ given.
- $b_1 + b_2 + \dots$ Converges, b_n non-negative real,
- $|Z_n| \le b_n \quad \text{for} \quad n = 1, 2, 3, \dots$

then $Z_1 + Z_2 + \dots$ Converges (absolutely)

Theorem (Geometric Series)

$$\sum_{m=0}^{\infty} q^m \quad \text{Converges to} \quad \frac{1}{1-q} \quad \text{if} \quad |\mathbf{q}| < 1 \text{ and diverges} \quad \text{if} \quad |\mathbf{q}| \ge 1.$$

Theorem (Ratio Test)

if $Z_n \neq 0$ (n = 1, 2, 3,) and

$$\left|\frac{Z_{n+1}}{Z_n}\right| \le q < 1 \text{ (for all } n > N, q \text{ is fixed)}$$

then $Z_1 + Z_2 + \dots$ Convergent absolutely.

if for every
$$n > N$$
, $\left| \frac{Z_{n+1}}{Z_n} \right| \ge 1$. Series is divergent.

Theorem (Ratio Test)

$$Z_n \neq 0.$$
 $\lim_{n \to \infty} \left| \frac{Z_{n+1}}{Z_n} \right| = \mathbf{L}$

(i) $Z_1 + Z_2 + \dots$ Convergent absolutely if L < 1. (ii) $Z_1 + Z_2 + \dots$ Divergent if L > 1. (iii) No conclusion if L = 1.

Theorem (Root Test)

If $\sqrt[n]{|Z_n|} \le q < 1$. (for every n > N, q is fixed) then $Z_1 + Z_2 + \dots$. Convergent absolutely.

If for infinitely many n,

 $\sqrt[n]{|Z_n|} \ge 1$, then the series is Divergent.

Theorem (Root Test)

Same as above with $\lim_{m\to\infty} \sqrt[n]{|Z_n|} = L.$