
SNU MAE Multivariable Control

3 Controllability and Observability

We begin this section with the following familiar result:

Lemma 3.1 A ∈ IRn×n has all its evals in the open LHP iff there exists P ∈
IRn×n, P = PT > 0 such that

AT P + PA < 0 .

3.1 Controllability

ẋ = Ax + Bu, x(t0) = x0 (1)
y = Cx + Du (2)

Definition 3.2 (Controllability) The dynamical system described by (1) or
the pair (A,B) is said to be controllable if, for any initial state x(t0) = x0, t1 > 0
and final state x1, there exists a (piecewise continuous) input u(·) such that the
solution of equation (1) satisfies x(t1) = x1. Otherwise, (A,B) is said to be
uncontrollable.

Theorem 3.3 (Controllability) The following are equivalent:

(i) (A,B) is controllable.

(ii) The controllability Gramian

Wc(t) ,
∫ t

o

eAτBB∗eA∗τdτ (3)

is positive definite for any t > 0.

(iii)
C ,

[
B AB A2B · · ·An−1B

]
(4)

has full-rank.

(iv) The matrix [A− λI, B] has full-row rank for all λ ∈ C.

(v) Let λ and x be any eigenvalue and any corresponding left eigenvector of
A (i.e., x∗A = x∗λ); then x∗B 6= 0.

(vi) The eigenvalues of A+BF can be freely assigned (with the restriction that
complex eigenvalues are in conjugate pairs) by a suitable choice of F .

Remark. The conditions (iv) and (v) are called Popov-Belevitch-Hautus
(PBH) tests.
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Definition 3.4 (Stabilizability) The dynamical system described by (1) or
the pair (A,B) is said to be (state-feedback) stabilizable if there exists a state
feedback u = Kx such that A + BK is stable.

Theorem 3.5 (A,B) is stabilizable iff there exist W ∈ IRn×nand R ∈ IRnu×n

such that W = WT > 0 and

AW + WAT + BR + RT BT < 0 .

Proof.

3.2 Observability

Definition 3.6 (Observability) The dynamical system described by (2) or the
pair (C, A) is said to be observable if, for any t1 > 0, the initial state state
x(0) = x0 can be determined from the time history of the input u(t) and the
output y(t) over the interval [0, t1]. Otherwise, (C, A) is said to be unobservable.

Theorem 3.7 (Observability) The following are equivalent:

(i) (C,A) is observable.

(ii) The observability Gramian

Wo(t) ,
∫ t

o

eA∗τC∗CeAτdτ (5)

is positive definite for any t > 0.

(iii)

O ,




C
CA
...

CAn−1


 (6)

has full-rank.

(iv) The matrix
[

A− λI
C

]
has full-row rank for all λ ∈ C.

(v) Let λ and x be any eigenvalue and any corresponding right eigenvector of
A (i.e., Ay = λy); then Cy 6= 0.

(vi) The eigenvalues of A+LC can be freely assigned (with the restriction that
complex eigenvalues are in conjugate pairs) by a suitable choice of L.

(vii) (A∗, C∗) is controllable.
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y ¾ G(s) u¾ K(s) ¾

Figure 1: observer-based controller

Remark. The conditions (iv) and (v) are called Popov-Belevitch-Hautus
(PBH) tests.

Definition 3.8 (Detectability) The pair (C, A) is said to be detectable if
there exists a matrix L such that A + LC is stable.

Theorem 3.9 (C,A) is detectable iff there exist P ∈ IRn×n, P = PT > 0 and
H ∈ IRn×ny such that

AT P + PA + HC + CT HT < 0 .

Proof. similar to Thm 3.5.

3.3 Observer-based Controllers

If a system is controllable and the states are available for feedback, then clearly,
the c.l. poles can be assigned arbitrarily through a constant feedback. Often,
the designer knows y and u only.

An observer is a dynamical system with input u, y and output x̂, which
asymptotically estimated the state, i.e., x̂ → x for (all) initial states and for
every input. An observer for (2) exists iff (C, A) is detectable, in which case, a
full-order Luenberger observer is given by

˙̂x = Ax̂ + Bu + L(Cx̂ + Du− y)

where L is a matrix that makes A + LC stable.
Then with u = Kx̂, the total system state equations are

[
ẋ
˙̂x

]
=

[
A BK

−LC A + BK + LC

] [
x
x̂

]

and with e := x− x̂, these equations become
[

ė
˙̂x

]
=

[
A + LC 0
−LC A + BK

] [
e
x̂

]
.

Now if (A,B) is controllable and (C,A) is observable, the closed-loop poles
(eigenvalues of A + LC and A + BK) can be arbitrarily assigned.

The closed-loop system is shown in Fig. 1, with the observer-based controller
denoted as

u = K(s)y
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and

K(s) =
[

A + BK + LC + LDK −L
K 0

]

G(s) =
[

A B
C D

]
.

From this construction, we can see that a system is output feedback stabi-
lizable iff (A, B) is stabilizable and (C,A) is detectable.

3.4 Lyapunov Equations

The equation
AX + XA∗ = −P , (7)

where A ∈ Fn×n and P ∈ Fn×n are given matrices, is called the Lyapunov
equation.

Lemma 3.10 There exists a unique solution X for (7), iff

λi(A) + λ̄j(A) 6= 0, ∀i, j . (8)

Theorem 3.11 Let A ∈ Fn×n be a given stable matrix. Then for any P ∈
Fn×n, the unique solution solving (7) is given by

X =
∫ ∞

0

eA∗τPeAτdτ . (9)

Proof.

It follows that the observability Gramian Wo of (C, A) can be obtained from

A∗Wo + WoA + C∗C = 0 .

(Similarly, the controllability Gramian Wc of (A,B) can be obtained from AWc+
WcA

∗ + BB∗ = 0.)

Theorem 3.12 Suppose A,Q ∈ Fn×n are given, and A is stable and Q = Q∗ ≥
0. Then Then (Q1/2, A) is observable iff

X :=
∫ ∞

0

eA∗τQeAτdτ > 0 . (10)
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Proof.

Theorem 3.13 Suppose that (C, A) is detectable and that X is any solution to
A∗X + XA = −C∗C. (i.e. there is no apriori assumption on the uniqueness of
solution) Then X ≥ 0 iff A is stable.
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