
SNU MAE Multivariable Control

6 LQ, LQG, H2, H∞ Control System Design

6.1 LQ: Linear systems with Quadratic performance cri-
teria

Consider a linear time-invariant system represented in state space form as1

x(t) = Ax(t) + Bu(t)
z(t) = Cx(t) t ≥ 0 (1)

For each t ≥ 0 the state x(t) is an n-dimensional vector, the input u(t) a k-
dimensional vector, and the output z(t) an m-dimensional vector. We wish to
control the system from any initial state x(0) such that the output z is reduced
to a very small value as quickly as possible without making the input u unduly
large. To this end we introduce the performance index

J =
∫ ∞

0

[zT (t)Qz(t) + uT (t)Ru(t)]dt. (2)

Q and R are symmetric weighting matrices. Often it is adequate to let the
two matrices simply be diagonal. The two terms zT (t)Qz(t) and uT (t)Ru(t) are
quadratic forms in the components of the output z and the input u, respectively.
The first term in the integral criterion (2) measures the accumulated deviation of
the output from zero. The second term measures the accumulated amplitude of
the control input. It is most sensible to choose the weighting matrices Q and R
such that the two terms are nonnegative, that is, to take Q and R nonnegative-
definite. If the matrices are diagonal then this means that their diagonal entries
should be nonnegative.

The problem of controlling the system such that the performance index (2)
is minimal along all possible trajectories of the system is the optimal linear
regulator problem. The reason why the linear regulator problem attracted so
much attention is that its solution may be represented in feedback form.

Theorem 6.1 Suppose that the system (1) is stabilizable and detectable. (Suf-
ficient for stabilizability is that the system is controllable. Sufficient for de-
tectability is that it is observable). If the weighting matrices Q and R are
positive-definite, then the following facts hold.

1. The algebraic Riccati equation (ARE)

AT X + XA + CT QC −XBR−1BT X = 0 (3)

1This note is based on Design Methods for Control Systems, by Bosgra, Kwakernaak,
Meinsma, and Multivariable Control Systems by Megretski.
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Figure 1: state feedback

has a unique nonnegative-definite symmetric solution X. If the (A, C) pair
is observable then X is positive-definite. (There are finitely many other
solutions of the ARE.)

2. The minimal value of the performance index (2) is Jmin = xT (0)Xx(0).

3. The minimal value of the performance index is achieved by the feedback
control law

u(t) = −Fx(t), t ≥ 0, where F = R−1BT X (4)

4. The closed-loop system ẋ(t) = (A−BF )x(t), t ≥ 0 is stable, that is, all
the eigenvalues of the matrix A−BF have strictly negative real parts.

2

6.1.1 Return difference equality and inequality

Figure 1(a) shows the feedback connection of the system ẋ = Ax+Bu with the
state feedback controller u = −Fx. If the loop is broken as in Fig. 1(b) then
the loop gain is

L(s) = F (sI −A)−1B. (5)

The quantity
J(s) = I + L(s) (6)

is known as the return difference, because J(s)u is the difference between the
signal u in Fig. 1(b) and the returned signal v = −L(s)u. Several properties of
the closed-loop system may be related to the return difference. Note

detJ(s) = det[I + L(s)] = det[I + F (sI −A)−1B]
= det[I + (sI −A)−1BF ] (∵ det(I + MN) = det(I + NM))
= det(sI −A)−1det(sI −A + BF )

=
det(sI −A + BF )

det(sI −A)

=
C.L. characteristic poly
O.L. characteristic poly

.
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Suppose that the gain matrix F is optimal. Then, by manipulation of the
algebraic Riccati equation (3) that the corresponding return difference satisfies
the equality

JT (−s)RJ(s) = R + GT (−s)QG(s). (7)

G(s) = C(sI−A)−1B is the open-loop transfer matrix of the system (1). The re-
lation (7) is known as the return difference equality or as the Kalman-Yakubovic-
Popov (KYP) equality, after its discoverers. We can use the return difference
equality to study the root loci of the optimal closed-loop poles. By setting
s = jω, we obtain the return difference inequality

JT (−jω)RJ(jω) ≥ R for all ω ∈ IR. (8)

Lemma 6.2 (KYP equality) Consider the linear time-invariant system ẋ(t) =
Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), with transfer matrix G(s) = C(sI −
A)−1B + D, and let Q and R be given symmetric constant matrices. Suppose
that the algebraic matrix Riccati equation

0 = AT X +XA+CT QC−(XB+CT QD)(DT QD+R)−1(BT X +DT QC) (9)

has a symmetric solution X. Then

R + G∼(s)QG(s) = J∼(s)RDJ(s). (10)

The constant symmetric matrix RD and the rational matrix function function
J are given by

RD = R + DT QD, J(s) = I + F (sI −A)−1B, (11)

with F = R−1
D (BT X + DT QC). The zeros of the numerator of detJ are the

eigenvalues of the matrix A−BF .

2

We use the notation G∼(s) = GT (−s). The KYP equality arises in the
study of the regulator problem for the system ẋ(t) = Ax(t) + Bu(t), y(t) =
Cx(t) + Du(t), with the criterion

∫ ∞

0

[yT (t)Qy(t) + uT (t)Ru(t)]dt. (12)

The equation (9) is the algebraic Riccati equation associated with this prob-
lem, and u(t) = −Fx(t) is the corresponding optimal state feedback law. The
KYP equality is best known for the case D = 0 . It then reduces to the return
difference equality

J∼(s)RJ(s) = R + G∼(s)QG(s). (13)

Proof of Kalman-Yakubovic-Popov equality. The algebraic Riccati equa-
tion (9) can be written as

0 = AT X + XA + CT QC − (XB + CT QD)R−1
D (BT X + DT QC), (14)
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with RD = R + DT QD. From the relation F = R−1
D (BT X + DT QC) we have

BT X + DT QC = RDF , so that the Riccati equation may be written as

0 = AT X + XA + CT QC − FT RDF. (15)

This in turn we rewrite as

0 = −(−sI −AT )X −X(sI −A) + CT QC − FT RDF. (16)

Premultiplication by BT (−sI −AT )−1 and postmultiplication by (sI −A)−1B
results in

0 = −BT X(sI −A)−1B −BT (−sI −AT )−1XB

+BT (−sI −AT )−1(CT QC − FT RDF )(sI −A)−1B. (17)

Substituting BT X = RDF −DT QC we find

0 = (DT QC −RDF )(sI −A)−1B + BT (−sI −AT )−1(CT QD − FT RD)
+BT (−sI −AT )−1(CT QC − FT RDF )(sI −A)−1B. (18)

Expansion of this expression, substitution of C(sI−A)−1B = G(s)−D and
F (sI −A)−1B = J(s)− I and simplification lead to the desired result

R + G∼(s)QG(s) = J∼(s)RDJ(s). (19)

2

6.1.2 Guaranteed gain and phase margins

If the state feedback loop is opened at the plant input then the loop gain is
L(s) = F (sI−A)−1B. For the single-input case, the return difference inequality
(8) takes the form

|1 + L(jω)| ≥ 1 for all ω ∈ IR. (20)

This inequality implies that the Nyquist plot of the loop gain stays outside the
circle with center at -1 and radius 1.

The SISO results may be generalized to the multi-input case. Suppose that
the loop gain satisfies the return difference inequality. Assume that the loop
gain L(s) is perturbed to W (s)L(s), with W a stable transfer matrix. It can be
proved that the closed-loop remains stable provided

RW (jω) + WT (−jω)R > R, ω ∈ IR. (21)

If both R and W are diagonal, then this becomes

W (jω) + WT (−jω) > I, ω ∈ IR.

This shows that if the i th diagonal entry Wi of W is real then it may have any
value in the interval (1/2,∞) without destabilizing the closed-loop system. If
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the i th diagonal entry is Wi(jω) = ejφ then the closed-loop system remains
stable as long as the angle φ is less than φ/3.
Proof of (21). From (8), we have

(I + L)∼(I + L) ≥ R on the imaginary axis.

Let’s consider the case when R = I. Then L∼+ L + L∼L ≥ 0 on the imaginary
axis, or

L−1 + (L−1)∼ + I ≥ 0 on the imaginary axis (22)

The perturbed system is stable if I +WL has no zeros in the right-half complex
plane. Equivalently, the perturbed system is stable if for 0 ≤ ε ≤ 1 no zeros of

I + [(1− ε)I + εW ]L on the imaginary axis (23)

cross the imaginary axis. Hence, the perturbed system is stable if only if

L−1 + (1− ε)I + εW = Mε on the imaginary axis (24)

is nonsingular on the imaginary axis for all 0 ≤ ε ≤ 1. Substitution of L−1 using
(24) into (22) yields

Mε+M∼
ε ≥ 2(1−ε)I+ε(W+W∼) = (2−ε)I+ε(W+W∼−I). on the imaginary axis

(25)
Thus if

W−1 + W∼ > I on the imaginary axis (26)

then Mε + M∼
ε > 0 on the imaginary axis for all 0 ≤ ε ≤ 1, which means

that Mε is nonsingular on the imaginary axis. Therefore, if (26) holds then the
perturbed system is stable. 2

6.1.3 Cross term in the performance index

The optimal regulator problem for the stabilizable and detectable system (1)
with the generalized quadratic performance index

J =
∫ ∞

0

[
zT (t) uT (t)

] [
Q S
ST R

] [
z(t)
u(t)

]
dt (27)

where
[

Q S
ST R

]
is positive definite. With v(t) = u(t) + R−1ST z(t), mini-

mization of J is equivalent to minimizing

J =
∫ ∞

0

[zT (t)(Q− SR−1ST )z(t) + vT (t)Rv(t)]dt (28)

for the system
ẋ(t) = (A−BR−1ST C)x(t) + Bv(t) (29)
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The condition that
[

Q S
ST R

]
is positive definite is equivalent to the con-

dition that both R and Q − SR−1ST be positive-definite. Thus we satisfy the
conditions of the theorem 6.1, and the Riccati equation now is

AT X + XA + CT QC − (XB + CT S)R−1(BT X + ST C) = 0. (30)

The optimal input for the system (1) is

u(t) = −Fx(t), F = R−1(BT X + ST C). (31)

6.1.4 Solution of the ARE

There are several algorithms for the solutions of ARE (30) is the most general
form of the Riccati equation. By redefining CT QC as Q and CT S as S, the
ARE (30) reduces to

AT X + XA + Q− (XB + S)R−1(BT X + ST ) = 0. (32)

And the solution can be obtained from the Hamiltonian matrix

H =
[

A−BR−1ST BR−1BT

−Q + SR−1ST −(A−BR−1ST )T

]
(33)

Under the assumptions of the theorem 6.1, the Hamiltonian matrix H has no
eigenvalues on the imaginary axis. If λ is an eigenvalue of the 2n×2n matrix H
then −λ is also an eigenvalue. Hence, H has exactly n eigenvalues with negative
real part. Let the columns of the real 2n× n matrix E form a basis for the n-
dimensional space spanned by the eigenvectors and generalized eigenvectors of
H corresponding to the eigenvalues with strictly negative real parts. Partition

E =
[

E1

E2

]
with E1 and E2 both square. Then

X = E2E
−1
1 (34)

is the desired solution of the ARE.

Hamiltonian matrix and ARE

1. The Hamiltonian matrix is of the form

H =
[

A Q
R −AT

]
, (35)

with all blocks square, and Q and R symmetric. Note that for J :=[
0 −I
I 0

]
,

J2 = −I;→ J−1 = −J

6



and
J−1HJ = −HT .

Thus, H and −HT are similar. And H and HT have the same eigenvalues.
Therefore, if λ is an eigenvalue of H, so is -λ. (When T is replaced with
∗, if λ is an eigenvalue of H, so is -λ̄.)

Therefore, the spectrum of H is symmetric about the jω axis. If H has
no eigenvalues on the jω axis, then n of them are in open LHP, and the
other n are in open RHP.

2. Using the Riccati equation (30), we obtain

H
[

I
X

]
=

[
A−BF

−Q + SR−1ST − (A−BR−1ST )T X

]

=
[

A−BF
XA−XBF

]
=

[
I
X

]
(A−BF ). (36)

3. If (A−BF )x = λx then

H
[

I
X

]
x =

[
I
X

]
(A−BF )x = λ

[
I
X

]
x. (37)

Thus, if A − BF has n eigenvalues with negative real parts (such as in
the solution of the LQ problem of theorem 6.1, then the eigenvalues of H
consist of these n eigenvalues of A−BF and their negatives.

4. Assume that H has no eigenvalues with zero real part. Then there is a
similarity transformation U that brings H into upper triangular form T
such that

H = UTU−1 =
[

U11 U12

U21 U22

] [
T11 T12

0 T22

] [
U11 U12

U21 U22

]
,

where the eigenvalues of the nn diagonal block T11 all have negative real
parts and those of T22 have positive real parts. From HU = UT we obtain

H
[

U11

U21

]
=

[
U11

U21

]
T11. (38)

After multiplying on the right by U−1
11 it follows that

H
[

I
U21U

−1
11

]
=

[
I

U21U
−1
11

]
U11T11U

−1
11 . (39)

Comparing with (36), we identify X = U21U
−1
11 and A−BF = U11T11U

−1
11 .

For the LQ problem the nonsingularity of U11 follows by the existence of
X such that A−BF is stable.
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6.2 LQG: Linear Quadratic Guassian

We consider the system

x(t) = Ax(t) + Bu(t) + Gv(t)
y(t) = Cx(t) + w(t)
z(t) = Dx(t)



 t ∈ IR (40)

The measured output y is available for feedback and the output z is the
controlled output. The noise signal v models the plant disturbances and w the
measurement noise. The signals v and w are vector-valued Gaussian white noise
processes with

Ev(t)vT (s) = V δ(t− s)
Ev(t)wT (s) = 0
Ew(t)wT (s) = Wδ(t− s)



 t, s ∈ IR (41)

V and W are nonnegative-definite symmetric constant matrices, representing
the intensity of the two white noise processes. The initial state x(0) is assumed
to be a random vector. Since the state x(t), t ∈ IR, and the controlled output
z(t), t ∈ IR are random processes, so is the quadratic error expression

zT (t)Qz(t) + uT (t)Ru(t), t ≥ 0, (42)

The problem of controlling the system such that the integrated expected value

∫ T

0

E[zT (t)Qz(t) + uT (t)Ru(t)]dt (43)

is minimal is called the stochastic linear regulator problem. The time interval
[0, T ] at this point is taken to be finite but eventually we consider the case that
T → 1. At any time t the entire past measurement signal y(τ), τ < t, is assumed
to be available for feedback.

6.2.1 Kalman filter

Suppose that we connect the observer

˙̂x(t) = Ax̂(t) + Bu(t) + K[y(t)− Cx̂(t)], t ∈ IR. (44)

to the noisy system

x(t) = Ax(t) + Bu(t) + Gv(t),
y(t) = Cx(t) + w(t),

}
t ∈ IR (45)

Differentiation of e(t) = x̂(t)− x(t) leads to the error differential equation

e(t) = (A−KC)e(t)−Gv(t) + Kw(t), t ∈ IR. (46)
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Owing to the two noise terms on the right-hand side the error now no longer
converges to zero, even if the error system is stable. Suppose that the error
system is stable, then it is proved that as t →∞ the error covariance matrix

Ee(t)eT (t) (47)

converges to a constant steady-state value Y that satisfies the linear matrix
equation

(A−KC)Y + Y (A−KC)T + GV GT + KWKT = 0. (48)

This type of matrix equation is known as a Lyapunov equation. It can be shown
that as a function of the gain matrix K the steady-state error covariance matrix
Y is minimal if K is chosen as

K = Y CT W−1. (49)

“Minimal” means here that if Ŷ is the steady-state error covariance matrix
corresponding to any other observer gain K then Ŷ ≥ Y . This inequality is
to be taken in the sense that Ŷ − Y is nonnegative-definite. A consequence
of this result is that the gain (49) minimizes the steady-state mean square
state reconstruction error limt→∞EeT (t)e(t). As a matter of fact, the gain
minimizes the weighted mean square construction error limt→∞EeT (t)Wee(t)
for any nonnegative-definite weighting matrix We. Substitution of the optimal
gain matrix (49) into the Lyapunov equation (48) yields

AY + Y AT + GV GT − Y CT W−1CY = 0. (50)

This is another matrix Riccati equation. The observer

x̂(t) = Ax̂(t) + Bu(t) + K[y(t)− Cx̂(t)], t ∈ IR, (51)

with the gain chosen as in (49) and the covariance matrix Y the nonnegative-
definite solution of the Riccati equation (50) is the famous Kalman filter (Kalman
and Bucy, 1961).

Theorem 6.3 Suppose that

x(t) = Ax(t) + Gv(t),
y(t) = Cx(t),

}
t ∈ IR (52)

is stabilizable and detectable, and the noise intensity matrices V and W are
positive-definite. Then the following facts follow from the theorem 6.1 by duality:

1. The algebraic Riccati equation

AY + Y AT + GV GT − Y CT W−1CY = 0 (53)

has a unique nonnegative-definite symmetric solution Y . If the system
(52) is controllable rather than just stabilizable then Y is positive-definite.
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2. limt→∞EeT (t)Wee(t) = trY We.

3. The minimal value of the mean square reconstruction error is achieved by
the observer gain matrix K = Y CT W−1.

4. The error system ė(t) = (A−KC)e(t) is stable.

6.2.2 Solution of the stochastic linear regulator problem

The stochastic linear regulator problem consists of minimizing
∫ T

0

E[zT (t)Qz(t) + uT (t)Ru(t)]dt (54)

for the system

ẋ(t) = Ax(t) + Bu(t) + Gv(t),
y(t) = Cx(t) + w(t),
z(t) = Dx(t)



 t ∈ IR . (55)

State feedback.
If the white noise disturbance v is present then the state and input cannot be
driven to 0. In this case, the state feedback law u = −Fx(t) with F given in
6.1 minimizes

lim
t→∞

1
T

∫ T

0

E[zT (t)Qz(t) + uT (t)Ru(t)]dt.

This limit equals the steady-state mean square error

lim
t→∞

E[zT (t)Qz(t) + uT (t)Ru(t)].

Output feedback.
If the state cannot be accessed for measurement, then the solution of the stochas-
tic linear regulator problem with output feedback (rather than state feedback)
is to replace the state x(t) in the state feedback law (4) with the estimated state
x̂(t) as shown in Fig. 2 (a). Using the estimated state as if it were the actual
state is known as certainty equivalence.

˙̂x = Ax̂ + Bu + K(y − Cx̂)
u = −Fx̂

(56)

The closed-loop system becomes
[

ẋ(t)
ė(t)

]
=

[
A−BF −BF

0 A−KC

] [
x(t)
e(t)

]
+

[
Gv(t)

−Gv(t) + Kw(t)

]
, (57)

and the closed-loop eigenvalues consist of the eigenvalues of A − BF (the reg-
ulator poles) together with the eigenvalues of A−KC (the observer poles). It
separates state estimation and control input selection. This idea is often referred
to as the separation principle.
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Figure 2: Observer based feedback control

6.2.3 Asymptotic analysis and loop transfer recovery

In order to see the effect of decreasing the intensity W of the measurement noise.
Suppose that W = σW0, with W0 a fixed symmetric positive-definite weighting
matrix and σ a positive number. We investigate the asymptotic behavior of the
closed-loop system as σ ↓ 0.

Suppose that the disturbance v is additive to the plant input u, that is,
G = B, and the open-loop plant transfer matrix P (s) = C(sI − A)−1B is
square, and its zeros all have negative real parts.

In (56), u = −F (sI − A + BF + KσC)−1Kσy. Thus breaking the loop at
the plant input as in Fig. 2(b), we obtain the loop gain

Lσ(s) = K(s)P (s) = F (sI −A + BF + KσC)−1KσC(sI −A)−1B. (58)

As σ ↓ 0, the error covariance matrix Yσ approaches the zero matrix, which
indicates that in the limit the observer reconstructs the state completely. With
G = B, the Riccati equation for the optimal observer is

AYσ + YσAT + BV BT − YσCT W−1CYσ = 0.

i.e.
AYσ + YσAT + BV BT − σKσW0K

T
σ = 0, Kσ = YσCT W−1.

From this, if Yσ ↓ 0, then Kσ ≈ 1√
σ
BUσ, where Uσ is a square nonsingular

matrix (which may depend on σ ) such that UσW0U
T
σ = V .

As σ ↓ 0, (58) becomes

Lσ(s) ≈ F (sI −A + BF +
1√
σ

BUσC)−1 1√
σ

BUσC(sI −A)−1B

≈ F (sI −A +
1√
σ

BUσC)−1 1√
σ

BUσC(sI −A)−1B

= F (sI −A)−1

(
I +

1√
σ

BUσC(sI −A)−1

)−1 1√
σ

BUσC(sI −A)−1B

=(†) F (sI −A)−1 1√
σ

BUσ

(
I +

1√
σ

C(sI −A)−1BUσ

)−1

C(sI −A)−1B

= F (sI −A)−1BUσ

(√
σI + C(sI −A)−1BUσ

)−1
C(sI −A)−1B

→ F (sI −A)−1B as σ ↓ 0. (59)
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In (†), we used the matrix identity (I + AB)−1A = A(I + BA)−1. Thus, Lσ

approaches the expression L0(s) = F (sI−A)−1B, i.e. the loop gain for full state
feedback. Accordingly, the guaranteed gain and phase margins are recouped.
This is called loop transfer recovery (LTR).

6.3 H2 optimization

In this section we define the LQG problem as a special case of a larger class
of problems known as H2 optimization. In many applications it is difficult
to establish the precise stochastic properties of disturbances and noise signals.
Very often in the application of the LQG problem to control system design the
noise intensities V and W play the role of design parameters rather than that
they model reality.

6.3.1 H2 norm

For the system

ẋ(t) = Ax(t) + Bv(t),
y(t) = Cx(t)

}
t ∈ IR . (60)

with the transfer matrix H(s) = C(sI − A)−1B, suppose that the signal v is
white noise with covariance function Ev(t)vT (t′) = V δ(t− t′). Then the output
y of the system is a stationary stochastic process with spectral density matrix

Sy(f) = H(j2πf)V H∗(j2πf), f ∈ IR.

As a result, the mean square output is

EyT (t)y(t) = tr

∫ ∞

−∞
Sy(f)df = tr

∫ ∞

−∞
H(j2πf)V H∗(j2πf)df

Recall that the H2-norm of the system

||H||22 =
1
2π

tr

∫ ∞

−∞
H(jω)H∗(jω)dω = tr

∫ ∞

−∞
H(j2πf)H∗(j2πf)df .

Thus, for the unit white noise V = I, the mean square output EyT (t)y(t) equals
precisely the square of the H2-norm of the system.

6.3.2 H2 norm

In this subsection we rewrite the time domain LQG problem into an equivalent
frequency domain H2 optimization problem. To simplify the expressions to come
we assume that Q = I and R = I, that is, the LQG performance index is

lim
t→∞

E[zT (t)z(t) + uT (t)u(t)]. (61)
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And the open-loop system is

ẋ(t) = Ax(t) + Bu(t) + Gv(t),
y(t) = Cx(t) + w(t) t ∈ IR . (62)

Consider Fig. 3, which consists of the interconnected plant P (s) and con-
troller u = K(s)y, driven by the external signals v and w.

w

+
−
- j - K(s) -

j
u

P (s)

?

v

-z

-
+

¾ w6

Figure 3: Feedback control configuration

We can compute the transfer matrix H(s) such that
[

z
u

]
=

[
H11 H12

H21 H22

] [
v
w

]
(63)

and the steady-state mean square error (61) becomes

lim
t→∞

E[zT (t)z(t) + uT (t)u(t)] = lim
t→∞

E

([
z(t)
u(t)

]T [
z(t)
u(t)

])

= tr

∫ ∞

−∞
H(j2πf)H∗(j2πf)df

= ||H||22.
Thus, solving the LQG problem amounts to minimizing the H2 norm of the

closed-loop system of Fig. 3 with (v, w) as input and (z, u) as output.

6.3.3 The standard H2 problem and its solution

Configuration of Fig. 3 is a special case of a standard LTI feedback configuration
of Figure 4. In Figure 4, w is the external input (v and w in Fig. 3). It is
typically used to describe external noises and internal perturbations caused by
nonlinearity and uncertainty. The signal z is called cost output, and represents
signals which the designer wants to be small (z and u in Fig. 3). The second
output y is the observed output, which represents input of the controller K
(to be designed). ideally should be zero Furthermore, u is the control input,
and y the observed output. The block G is the generalized plant, and K the
compensator.

In order to define a standard LTI feedback optimization problem, sketched
on Figure 4 (note that this is an LFT), one has to specify the plant G, and a
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performance measure. The performance measure specifies a particular qualita-
tive measure of smallness for the cost output z. The optimization process will
aim at finding an LTI feedback system K which makes the feedback system on
Figure 4 stable, and minimizes the closed loop system from w to z. Two most
popular measures (norms) of how large a stable LTI system in feedback opti-
mization are: H2 norm and H-Infinity norm. As previously discussed, the H2
norm measures the size of an LTI system as an integral of square of amplitude
of its frequency response, while the H-Infinity norm uses the maximal (over all
frequencies) amplitude. There are plants G for which the standard H2 and H-
Infinity optimization algorithms are guaranteed to fail. Certain well-posedness
conditions have to be satisfied to avoid such failures.

When a CT LTI system describes the plant in a standard feedback op-
timization setup, its input is partitioned into the disturbance and actuator
components. Similarly, the output is partitioned into the cost and measure-
ment components. Consequently, it is natural to decompose the corresponding
B,C, D matrices:

ẋ = Ax + B1w + B2u (64)
z = C1x + D11w + D12u (65)
y = C2x + D21w + D22u (66)

or

G =




A B1 B2

C1 D11 D12

C2 D21 D22


 (67)

The standard H2 optimization problem is the problem of choosing the com-
pensator K in the block diagram of Fig. 4 such that it

1. stabilizes the closed-loop system, and

2. minimizes the H2-norm of the closed-loop system (with w as input and z
as output).

w -
G

- z

¾

y

K

-

u

Figure 4: Standard feedback optimization setup
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The H2 problem may be solved by reducing it to an LQG problem. The
derivation necessitates the introduction of some assumptions as below. They
are natural assumptions for LQG problems. First, if D11 6= 0 below then the
output z has a white noise component that may well make the mean square
output EzT (t)z(t) infinite. We therefore assume that D11 = 0.

Theorem 6.4 Consider the standard H2 optimization problem for the general-
ized plant

ẋ = Ax +B1w +B2u
z = C1x +D12u
y = C2x +D21w +D22u

(68)

with the following assumptions:

1. The pair (A,B2) to be stabilizable, and the pair (C2, A) to be detectable

2. The matrix

My(s) =
[

A− sI B1

C2 D21

]
(69)

must be right invertible (i.e. its rows must be linearly independent) for all
s on the imaginary axis, including the case s = ∞, when the condition is
that matrix D21 must be right invertible.

3. The matrix

Mu(s) =
[

A− sI B2

C1 D12

]
(70)

must be left invertible (i.e. its columns must be linearly independent) for
all s on the imaginary axis, including the case s = ∞, when the condition
is that matrix D12 must be left invertible.

Under these assumptions the optimal output feedback controller u = K(s)y
is

˙̂x(t) = Ax̂(t) + B2u(t) + L[y(t)− C2x̂(t)−D22u(t)] (71)
u(t) = −Fx̂(t). (72)

The observer and state feedback gain matrices are

F = (DT
12D12)−1(BT

2 X + DT
12C1), (73)

L = (Y CT
2 + B1D

T
21)(D21D

T
21)

−1. (74)

The symmetric matrices X and Y are the unique positive-definite solutions of
the algebraic Riccati equations

AT X + XA + CT
1 C1 − (XB2 + CT

1 D12)(DT
12D12)−1(BT

2 X + DT
12C1) = 0

AY + AY T + B1B
T
1 − (Y CT

2 + B1D
T
21)(D21D

T
21)

−1(C2Y + D21B
T
1 ) = 0.
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2

The first set of constraints guarantees existence of a stabilizing feedback
(so that the set of feasible decision parameters is not empty). If this is not the
case, the physical feedback control setup should be modified by adding extra
actuators (to make the pair (A,B2) stabilizable) and/or sensors (to make the
pair (C2, A) detectable).

The second set of constraints guarantees existence of an optimal con-
troller (and is also related to numerical well-posedness of the optimization
problem). Informally speaking, it requires that

• w → y : every component of the measurement output of the plant be
dependent on the disturbance input at every frequency, and

• u → z : every component of the actuator input affect the cost output at
every frequency.

When A has no eigenvalues on the imaginary axis, the condition can be re-
written as left invertibility of transfer matrix

P12(s) = Pu→z(s) = C1(sI −A)−1B2 + D12 ,

and right invertibility of

P21(s) = Pw→y(s) = C2(sI −A)−1B1 + D21 .

The case when Mu(s) is not left invertible at some s = jω will be referred to as
control singularity at frequency ω. Similarly, the case when My(s) is not right
invertible at some s = jω. will be referred to as sensor singularity at frequency
ω.

6.4 State space solution of the standard H∞ problem

Among the various solutions of the suboptimal standard H∞ problem, the one
based on state space realizations is the most popular 2. In these approaches it
is assumed that the generalized plant G is proper. Hence it has a realization of
the form

x = Ax + B1w + B2u, (75)
z = C1x + D11w + D12u, (76)
y = C2x + D21w + D22u. (77)

A solution of the corresponding H∞ problem based on Riccati equations is
implemented that requires the following conditions to be satisfied:

1. (A, B2) is stabilizable and (C2, A) is detectable.

2J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis. State-space solutions to
standard H2 and H∞ control problems. IEEE Trans. Aut. Control, 34:831.847, 1989.

16



2.
[

A− jω B2

C1 D12

]
has full column rank for all ω ∈ IR.

3.
[

A− jω B1

C2 D21

]
has full row rank for all ω ∈ IR.

4. D12 and D21 have full rank.

With these assumptions the formulae for suboptimal controllers are as follows:

Theorem 6.5 (solution of the standard H∞ problem) Consider the con-
figuration of Fig. 4 and assume the above four assumptions are satisfied, and
for simplicity, that also

[
B1

D21

]
DT

21 =
[

0
I

]
, DT

12

[
C1

D12

] [
0 I

]
(78)

Then there exists a stabilizing controller for which ||H||∞ < γ iff the following
three conditions hold.

1. AQ+QAT +Q( 1
γ2 CT

1 C1−CT
2 C2)Q+B1B

T
1 = 0 has a stabilizing solution

Q ≥ 0,

2. PA+AT P +P ( 1
γ2 B1B

T
1 −B2B

T
2 )P +CT

1 C1 = 0 has a stabilizing solution
P ≥ 0.

3. All eigenvalues of QP have magnitude less than γ2.

And this controller can be realized by

x = (A + [ 1
γ2 B1B

T
1 −B2B

T
2 ]P )x̂ + (I − 1

γ2 QP )−1QCT
2 (y − C2x̂)

u = −BT
2 Px̂

(79)

2

The formulae for K are rather cumbersome if the assumptions (78) do not
hold, computationally it makes no difference. The solution, as we see, involves
two algebraic Riccati equations whose solutions define an observer and state
feedback law. 3 The problem can also be solved using linear matrix inequalities
(LMIs).

The above H∞ solution have the following properties:
3The full solution is documented in a paper by Glover and Doyle, State-space formulae

for all stabilizing controllers that satisfy an H1-norm bound and relations to risk sensitiv-
ity. Systems & Control Letters, 11:167.172, 1988, and K. Glover and J. C. Doyle. A state
space approach to H∞ optimal control. In H. Nijmeijer and J. M. Schumacher, editors,
Three Decades of Mathematical System Theory, volume 135 of Lecture Notes in Control and
Information Sciences. Springer-Verlag, Heidelberg, etc., 1989.
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• For the two Riccati equations to have a solution it is required that the
associated Hamiltonian matrices

[
A B1B

T
1

− 1
γ2 CT

1 C1 + CT
2 C2 −AT

]
,

[
A 1

γ2 B1B
T
1 −BT

2 B2

−CT
1 C1 −AT

]

have no imaginary eigenvalues. Stated differently, if γ0 is the largest value
of γ for which one or both of the above two Hamiltonian matrices has an
imaginary eigenvalue, then γopt ≥ γ0.

• The controller in (79) is stabilizing iff

Q ≥ 0, P ≥ 0, λmax(QP ) < γ2

• The controller (79) is of the same order as the generalized plant.

• The transfer matrix of the controller (79) is strictly proper.

6.5 MATLAB format for H2 and H-Infinity optimization

This subsection describes the use of µ-Analysis and Synthesis Toolbox, the
recommended set of routines for H2 and H-Infinity optimization. To define a
plant state space model P in this toolbox, use
P=pck(A,B,C,D);
where A, B, C, D are the matrices defining

P =
(

A B
C D

)
(80)

To call an H2 optimization algorithm with a minimal set of input and output
arguments, use
K=h2syn(P,ny,nu);
where P is the plant model in the packed format, ny is the number of sensors
(i.e. the dimension of vector y), nu is the number of actuators (the dimension
of u), K is the optimal controller model in the packed format. If
[K,CL,GAM,INFO] = h2syn(P,NMEAS,NCON);
is used, then K= LTI controller, CL= lft(P,K) is a closed-loop system Tw→z,
GAM = norm(CL) is H2 norm of Tw→z, and INFO contains additional infor-
mation.

To get the coefficient matrices of the controller, unpack K with
[Af,Bf,Cf,Df]=unpck(K);

To call an H∞ optimization algorithm with a minimal set of input and out-
put arguments, use
K=hinfsyn(P,nmeas,ncon,gmin,gmax,tol);
Here the output argument and the first three input arguments have same mean-
ing as in H2 optimization. The presence of the last three input arguments is
caused by the fact that function hinfsyn.m is not capable of finding the opti-
mal H-Infinity controller. Instead it searches for a controller which yields closed
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loop H∞ norm γ, such that (γ−γmin)/γ is not larger than the relative tolerance
parameter tol. Here γmin is the minimal achievable H-Infinity norm, gmin is a
known lower bound for γmin (one can safely use gmin=0), and gmax is a known
upper bound for γmin. While it is not always easy to find an upper bound,
hinfsyn.m will tell you if your current guess is too low. Similarly, you can use
[K,CL,GAM,INFO] = hinfsyn(...);
and also specify ‘METHOD’. Riccati solution is default, and ‘lmi’ (LMI solution)
or ‘maxe’(Maximum entropy solution) can be used alternatively.

6.6 A simple design example

Consider a simple feedback design task shown on Figure 5, where G = G(s) =
1/s2 is a given open loop plant model, and F = F (s) is the feedback controller
to be designed to provide a desired closed loop response T = T (s) from refer-
ence input r to controlled output q. Assume that the ideal desired closed loop
response is T (s) = T0(s) = 1/(s + 1). This response cannot be achieved by
using a proper controller transfer function F (s). However, one can try to ap-
proximate the ideal response T0(s) by choosing an appropriate stabilizing proper
controller F, while checking the trade-off between the quality of approximation
and the power utilized by the controller. Both H2 and H-Infinity optimization
frameworks are easy to use for this purpose.

r - e - F -
v

G - q
6−

Figure 5: A simple feedback design example

6.6.1 Reduction to a standard optimization setup

To rewrite the design specifications as a standard feedback optimization setup,
introduce the ideal response transfer function to the block diagram, and define
e as the difference between the actual and the desired response (Fig. 6).

Our objective is to make the closed loop transfer function from r to e small
by selecting a controller with input r−q and output v. In terms of the standard
setup, this calls for selecting r as the disturbance input w, v as the actuator
input u, r− q as the sensor output y, and e as the cost output z (Fig. 7). Then

z = T0r − q =
1

s + 1
r − 1

s2
v

y = r − 1
s2

v .
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r - e - F - G - q

6−
e - e

6−
•

-T0
-

Figure 6: Reduction to standard optimization setup

w = r -
P

- z = e

¾

y = r − q

K

-

u = v

Figure 7: Modification to the standard feedback optimization setup

The corresponding plant transfer matrix P is given by

P (s) =
[

1/(s + 1) −1/s2

1 −1/s2

]
,

which corresponds to a minimal state space model with

A =



−1 0 0
0 0 0
0 1 0


 , B1 =




1
0
0


 , B2 =




0
1
0


 , (81)

C1 = [1 0 − 1] , C2 = [0 0 − 1] , D11 = D22 = D12 = 0 , D21 = 1 (82)

6.6.2 Modification for well-posedness

An attempt to use h2syn.m or hinfsyn.m on this setup will produce an error
message, because the setup is not well-posed. One obvious reason for this is
absence of a control penalty (causing a control singularity at ω = ∞ – recall
Pu→z(s) = C1(sI − A)−1B2 + D12, and D12 = 0 here.). This can be fixed
by adding εuv as an extra component of the cost z, where εu will become a
tuning parameter for the designer (the larger εu is, the less power the optimal
controller will use, at the expense of providing a poorer approximation of the
desired closed loop response). A less obvious problem with the setup is a sensor
singularity at ω = 0, which is not as easy to spot since the open loop plant
has a pole at s = 0 (note A in (81) has eigenvalues on jω axis). Actually, this
is a double sensor singularity at ω = 0, since the determinant of My(s) has a
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double root at s = 0 (note det(sI − A) = s2(s + 1)). This singularity can be
fixed by having an extra disturbance signal f = εyw2 added to the input of the
double integrator. Here parameter εy will quantify sensitivity of the closed loop
system with respect to the plant disturbances (the smaller εy, the larger the
sensitivity).

Fig. 8 shows this modification. The resulting standard setup will have two-
component w, two-component z, and two tuning parameters εu and εy.

r - e - F - e
6

f = εyw2

v

εu
- -εuv

- G - y•

6−
e - e

6−

-T0
-

Figure 8: Adding extra disturbance

w =
[

r
w2

]
-

P
- z =

[
e

εuv

]

¾

y = r − 1
s2 (v + εyw2)

K

-

u = v

Figure 9: Modification to the standard feedback optimization setup

The plant transfer matrix in Fig. 9 will have the form

P (s) =




1/(s + 1) −εy/s2 −1/s2

0 0 εu

1 −εy/s2 −1/s2


 (83)

and a minimal state space model given by

ẋ1(t) = −x1(t) + w1(t) ,

ẋ2(t) = u(t) + εyw2(t) ,

ẋ3(t) = x2(t) ,

z1(t) = x1(t)− x3(t) ,

z2(t) = εuu(t) ,

y(t) = −x3(t) + w1(t) .
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A sample MATLAB code for H2 optimization is given by
eu=0.01;
ey=0.01;
A=[-1 0 0;0 0 0;0 1 0];
B1=[1 0;0 ey;0 0];
B2=[0;1;0];
C1=[1 0 -1;0 0 0];
C2=[0 0 -1];
D11=zeros(2);
D12=[0;eu];
D21=[1 0];
D22=0;
P=pck(A,[B1 B2],[C1;C2],[D11 D12;D21 D22]);
K=h2syn(P,1,1);
[A,Bf,Cf,Df]=unpck(K);

To modify this for H-Infinity optimization, simply replace the h2syn line
with K=hinfsyn(P,1,1,0,1,0.01);.
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