Soil Mechanics Lecture note #7

Effective Stress

Prel.

O Volume change of soil (solid particles + water + air)

- rearrangement of the skeleton of solid particles irreversible

- compression of the air

- O Resisting Forces
- normal stress → by the soil skeleton and, if (fully saturated), by the pore water,
- shear stress \rightarrow only by the (soil skeleton) Soil particle \rightarrow (x) Soil skeleton (o)

1. The Principle of Effective Stress

- \circ The total normal stress(σ) on a plane within the soil mass = the force per unit area of the plane (imagining the soil to be a single-phase material)
- The pore water pressure(u) = the pressure of the pore water $(h_p \times \gamma_w)$
- \circ The effective normal stress ($\overline{\sigma}$ or σ') on a plane representing the stress transmitted thru the soil skeleton only,

1/4

2/4

2. Effective Vertical Stress due to Self-wt, of Soil

$$\circ_{\text{at}} \overline{BB'},$$

$$\sigma_v = |_{V \text{ sat}} \cdot z_0$$

$$u = |_{V \text{ w}} \cdot z_0$$

$$\overline{\sigma_v} = |_{\sigma_v} - u = (\gamma_{\text{sat}} - \gamma_{\text{w}}) z_0$$

$$= (\gamma_v) \cdot z_0$$

3. Effective Stress vs. Pore Water Pressure

- O Static p.w.p : pore pressure in a natural condition
- O Excess p.w.p : pore pressure after the total stress is increased
- Steady state p,w,p: pore water pressure at the end of the transient flow of p,w (In most cases = Static p,w,p.)
- * Fig. 2.17 (p. 57): Spring analogy for Effective Stress & P.W.P

(보조자료 #1)

Soil Mechanics Lecture note #7

3/4

4. Dissipation of Excess p.w.p.

• The dissipation(drainage) period

```
= f (permeability)
```

- Consolidation: drainage process for the soils of low permeability (e.g., Saturated clay
- Swelling (⇔consolidation) : volume increase due to total stress decrease is limited

(* Particle rearrangement is irreversible)

5. Capillary Rise

 Saturation of soil due to the capillary rise above the water table does not contribute to the hydrostatic pressure below w.t.

Soil Mechanics Lecture note #7

- O Artesian well
- \circ Artesian pressure $(h_p)_{ar} \times \gamma_w$