Robust Control Toolbox™ mixsyn

Provide feedback about this page

Ho mixed-sensitivity synthesis method for robust control loopshaping design

Syntax

[K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3)
[K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3,KEY1,VALUE1,KEY2,VALUE2,...)

Description

[K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3) computes a controller K that minimizes the H_{∞} norm of the closed-loop transfer function the weighted mixed sensitivity

$$T_{y_1u_1} \stackrel{\Delta}{=} egin{bmatrix} W_1S \ W_2R \ W_3T \end{bmatrix}$$

where S and T are called the sensitivity and complementary sensitivity, respectively and S, R and T are given by

$$S = (I + GK)^{-1}$$

$$R = K(I + GK)^{-1}$$
$$T = GK(I + GK)^{-1}$$

Figure 5-13: Closed-loop transfer function $T_{y_1u_1}$ for mixed sensitivity mixsyn.

The returned values of S, R, and T satisfy the following loop shaping inequalities:

$$\bar{\sigma}(S(j\omega)) \leq \gamma \ \underline{\sigma}(W_1^{-1}(j\omega))$$

$$\bar{\sigma}(R(j\omega)) \leq \gamma \sigma(W_2^{-1}(j\omega))$$

$$\bar{\sigma}(T(j\omega)) \leq \gamma \ \sigma(W_3^{-1}(j\omega))$$

where $\mathbf{Y} = \text{GAM}$. Thus, W_1 , W_3 determine the shapes of sensitivity S and complementary sensitivity T. Typically, you would choose W_1 to be small inside the desired control bandwidth to achieve good disturbance attenuation (i.e., performance), and choose W_3 to be small outside the control bandwidth, which helps to ensure good stability margin (i.e., robustness).

For dimensional compatibility, each of the three weights W_1 , W_2 and W_3 must be either empty, scalar (SISO) or have respective input dimensions N_{Y} , N_{U} , and N_{Y} where G is N_{Y} -by- N_{U} . If one of the weights is not needed, you may simply assign an empty matrix []; e.g., P = AUGW(G, W1, [], W3) is SYS but without the second row (without the row containing W2).

Algorithm

```
[K,CL,GAM,INFO] = mixsyn(G,W1,W2,W3,KEY1,VALUE1,KEY2,VALUE2,...)
is equivalent to
```

```
[K,CL,GAM,INFO]=...
hinfsyn(augw(G,W1,W2,W3),KEY1,VALUE1,KEY2,VALUE2,...).
```

mixsyn accepts all the same key value pairs as hinfsyn.

Example

The following code illustrates the use of mixsyn for sensitivity and complementary sensitivity `loop-shaping'.

```
s=zpk('s');
G=(s-1)/(s+1)^2;
W1=0.1*(s+100)/(100*s+1); W2=0.1;
[K,CL,GAM]=mixsyn(G,W1,W2,[]);
L=G*K; S=inv(1+L); T=1-S;
sigma(S,'g',T,'r',GAM/W1,'g-.',GAM*G/ss(W2),'r-.')
```


Figure 5-14: $mixsyn(G,W1,W2,[\])$ shapes sigma plots of S and T to conform to Y/W_1 and YG/W_2 , re Limitations

The transfer functions G, W_1 , W_2 and W_3 must be proper, i.e., bounded as $S \to \infty$ or, in the discrete-time case, as $S \to \infty$. Additionally, W_1 , W_2 and W_3 should be stable. The plant G should be stabilizable and detectable; else, P will not be stabilizable by any K.

See Also

Augments plant weights for control design

Hay controller synthesis

Page 7/2