1/7

※What to be learned:

- 1 Derive governing equation
- ② Get solution (h (x,z)) for various B.C
- 3 Determine p,w,p / h, gradient / flow quantities

1. Seepage Equation (2-D)

Assumptions: homogeneous, isotropic, Darcy's law valid

- The volume of water entering the element per unit time $= v_x dy dz + v_z dx dy$
- O The volume of water leaving the element per unit time

=
$$(v_x + \frac{\partial v_x}{\partial x}dx)dydz + (v_z + \frac{\partial v_z}{\partial z}dz)dxdy$$

O Since no volume change assumed, i.e., (steady - state)

$$q_{in} = q_{out}$$

$$\rightarrow \frac{\partial v_x}{\partial x} + \frac{\partial v_z}{\partial z} = 0 \qquad \qquad \bullet \left[\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial z^2} = 0 \right]$$

$$\rightarrow \nabla^2 h = 0$$
 (Laplace Eq.)

2/7

2. Flow nets

O Definition: (text p.69)

- O Types of seepage flow :
 - Confined flow: Phreatic line known

(Top-flow)

- Unconfined flow: not known

3. Seepage underneath cofferdams (confined flow)

3/7

- O Boundary conditions for the confined flow
 - i) Line \overline{AB} : e-p line $\left(h_t = h\right)$
 - ii) From pt. (A) ightarrow pt. (B) ightarrow pt. (C) : flow line (top)
 - iii) Line $\overline{\mathit{CD}}: \mathbf{e}\mathbf{-p}$ line $(h_t=0)$
 - iv) Line \overline{FG} : flow line (bottom)
- \circ Square figures ($\square J_1K_1M_1N_1$)
 - A : whole x-section, A/y = B
 - ° a:x-section between flow lines, a/y=b
 - From Darcy's law,
 - \circ q/y=kia/y , y: the dimension normal to the section
 - let $\overline{q}=q/y$, a/y=b then, $\overline{q}=kib$, \overline{q} : the flow rate per running foot (i.e., pet foot normal to the section)

b: the width of a flow line

$$\circ \quad \overline{q} = kib = k \cdot \frac{\Delta h}{l} b = k \Delta h \cdot \frac{b}{l}$$

 Δh , l: the head loss and the length in accrossing the figure

Constant thru the section

$$\triangle \overline{q_1} = k \triangle h_1 \frac{b_1}{l_{|||}}$$
 (for sub₁ figure)

$$\triangle \overline{q_1}' = k \triangle h'_1 \frac{b_1'}{l_1'}$$
 (for sub_{1'} figure)

$$\triangle \overline{q_2} = k \triangle h_2 \frac{b_2^{|||}}{l_2}$$
 (for sub₂ figure)

1

O If all the 3 figures are squares, i.e.,

$$\frac{b_1}{l_1} = \frac{b_1'}{l_1'} = \frac{b_2}{l_2} = 1$$

- \diamond and \triangle $\overline{q_1}=\triangle$ $\overline{q_1}'$ (: Same flow line boundaries) then, $\triangle h_1=\triangle h_1'$
- \circ and \triangle $h_1{'}=\triangle$ h_2 (": Same e-p line boundaries") then, $\triangle \overline{q_1{'}}=\triangle \overline{q_2}$ $\& \ \triangle h_1=\triangle h_2$
- O Thus, if all figures are squares
 - i) the same quantity of flow thru each figure
 - ii) the same head drop in crossing each figure
- \circ In fact, these are trues if $\frac{b}{l}$ = constant (\neq 1)

Soil Mechanics

Lecture note #9

O Graphical determination of flow nets

- i) Trial and error
- ii) Remember boundary conditions
- iii) 4~5 flow channels sufficient
- iv) All figures should resemble squares
- v) Size of the squares change gradually
- vi) One trial flow line (or e-p line) near a boundary line drawn first
- O Example (text Fig 3.7, p 72) Fig (c) should be symmetric to the bottom (i.e., mirror image)
- O Ref.s: "Seepage, Drainage & Flow Nets" by H. R. Cedergen (Wiley Interscience)
- Flow quantity calculation

$$\overline{q_B} = k h \frac{N_f}{N_d},$$

$$= k \frac{h}{N_d} N_f$$

$$= k \frac{h}{N_d} \frac{1}{l} b N_f$$

$$= k \frac{h/N_d}{l} b N_f$$

$$= k \frac{\Delta h}{l} b N_f$$

$$= k i \cdot B(=A/y)$$

$$= \overline{q_B}$$

 N_f : number of flow channel

5/7

 N_d : number of e.p. drops

h : total head loss

6/7

4. Seepage thru earth dams (unconfined flow)

- O Boundary conditions
 - i) \overline{BC} : e-p line, $h_t=h$
 - ii) \overline{AD} : e-p line, $h_t = 0$
 - $\ensuremath{\text{iii}})$ $\ensuremath{\overline{\textit{CD}}}$: top-flow line $(h_p=0\,)$: initially undetermined
 - iv) $\overline{\it BA}$: bottom-flow line, $h_{\rm e}=0$
- \circ h_p at every pt, on the top flow line = 0 thus.

$$\left(\begin{array}{ccc} h_t \end{array} \right)_{t,f,I} = \left(\begin{array}{ccc} h_e \end{array} \right)_{t,f,I} & \xrightarrow{\bullet} & \triangle z_1 = \triangle \ z_2 = \triangle \ z_3$$

 \because between each e-p line, head drops are the same, & all Δh are equal to Δh_B

- O Filter
- purpose : to keep the seepage entirely within the dam
- requirements : piping/permeability

$$rac{(D_{b0})_f}{(D_{b0})_s} < 25$$
 - piping : pores be small enough to prevent particles being carried away $\left(rac{(D_{15})_f}{(D_{85})_s} < 4 \sim 5
ight)$

<u>USBR</u>

$$(D_{
m max})_f < 3$$
 " - permeability : high enough for rapid drain $\left(rac{(D_{15})_f}{(D_{15})_s} > 4 \sim 5
ight)$

7/7

O Flow net construction for earth dam

- The equation of the basic parabola

$$x = x_0 - \frac{z^2}{4x_0}$$

- By Casagrande, it is recommended to take the initial pt, of the parabola at G where $\overline{GC}=[0.3\overline{HC}]$

to determine the unknown constant, \boldsymbol{x}_0