

Evaluation on formability of complex concentrated alloys with different deformation mechanism

Current Status of Structural Materials 2020.04.13

Jeong-Won Yeh

Department of Materials Science and Engineering, Seoul National University, Republic of Korea

Homepage : http://espark.snu.ac.kr

ESPark Research Group

e-mail : jwyeh@snu.ac.kr

Contents

- 1. Why <u>Complex Concentrated alloys(CCAs)</u> system ?
 - (1) Uniqueness of Complex Concentrated alloys
 - (2) Necessity of Formability test
- 2. What *measurement method* is used to evaluate Formability?
 - (1) Forming Limit Diagram
 - (2) Limit Dome Height test

3. Associated stress state during forming

- (1) Uniaxial stress state
- (2) Plane stress state

4. Difference of *deformation behavior* depending on stress state

(1) Deformation mechanism: Twinning

- (2) Deformation mechanism: Phase transformation
- 5. How to design CCAs with enhanced formability
- 6. Conclusion

Complex concentrated alloy: a new paradigm of alloy design

Composition based definition (High entropy alloy)

Composed of **five or more principal elements** with the concentration of each element being between **5** - **35** at.%.

Additional definition

Single-phase solid solution (or multiphase when consisting phases satisfy composition based or entropy based definitions.)

- (1) Thermodynamics : high entropy effect
- (2) Kinetics : sluggish diffusion effect
- (3) Structure : severe lattice distortion effect
- (4) Property : cocktail effect

L.J. Santodonato et al., Nature communications 6, 5964 (2015)

Representative complex concentrated alloy: cantor alloy

Cantor alloy: Cr₂₀Mn₂₀Fe₂₀Co₂₀Ni₂₀

CCAs are expected to be structural materials

ESPark Research Group

Formability evaluation is essential for using HEAs as structural materials.

Evaluate formability

From uniaxial tensile test

- Yield stress ↓
- Ultimate tensile stress 1
- Uniform elongation 1
- Strain hardening 1

$$\sigma = K\sigma^{n}, d\sigma/d\epsilon = nK\epsilon^{n-1} = \sigma$$
or
$$\epsilon = n$$
onset of necking occur at

onset of necking occur at strain = strain hardening exponent

Additional property

- Plastic instability
- Localized necking
- R-value
- Strain rate sensitivity

...

K. Chung et al./ International Journal of Plasticity 27(2011)52-81

Variation of the m value of the TWIP940 steel with respect to strain and strain rate.

Magnified dynamic strain aging section of tensile curve of TWIP940

Fail without strain localization, – strain rate sensitivity(m): formability↓

CCAs Design with various deformation mechanism by SFE control

Decrease of Stacking Fault Energy

 $\boldsymbol{\Gamma} = 2\rho \boldsymbol{\Delta} \boldsymbol{G}^{\boldsymbol{\gamma} \to \boldsymbol{\varepsilon}} + 2\sigma$

Γ : Stacking fault energy $\rho : molar surface density along {111} <math>\rho = \frac{4}{\sqrt{3}} \frac{1}{a^2 N}$ $\Delta G^{\gamma \to \varepsilon} : Molar Gibbs energy of transformation$ $\sigma : Surface energy of interface (5 - 15 mJ/m^{-2})$

Schokely Partial dislocation $\frac{1}{2}[\overline{1}10] = \frac{1}{6}[\overline{1}2\overline{1}] + \frac{1}{6}[\overline{2}11]$

Depending on the stacking fault energy, deformation mechanism of an alloy system can be changed from dislocation movement to phase transformation

$\Delta G^{\gamma \to \varepsilon}$ phase is the dominant factor to change the SFE of an alloy system

CCAs Design with various deformation mechanism by SFE control

Cr20 Mn20 Fe20 CO20 Ni20

By Lowering $\Delta G^{\gamma \rightarrow \epsilon}$, deformation mechanism can be changed

#	Composition	$\Delta G_{(hcp-fcc)}(J)$
1	$Cr_{20}Mn_{20}Fe_{20}Co_{20}Ni_{20}$	1927.8
2	$Cr_{20}Mn_{14}Fe_{24}Co_{24}Ni_{16}$	771.0
3	Cr ₂₀ Mn ₁₀ Fe ₃₀ Co ₃₀ Ni ₁₀	245.3
4	Cr ₂₀ Mn ₈ Fe ₃₂ Co ₃₂ Ni ₈	59.4

Confirmation of deformation mechanism through EBSD

		Cr ₂₀ Mn ₂₀ Fe ₂₀ Co ₂₀ Ni ₂₀	Cr ₂₀ Mn ₁₄ Fe ₂₆ Co ₂₆ Ni ₁₄	Cr ₂₀ Mn ₁₀ Fe ₃₀ Co ₃₀ Ni ₁₀	Cr ₂₀ Mn ₈ Fe ₃₂ Co ₃₂ Ni ₈
undeform	Bottom	Min 0 Max 4		Martensite Austenite	
	Bending	- the second sec		- Tan-	
	Dome				
deform	Dome Shape	40 50			
	Note	Cantor	TWIP	TRIP	TADP(TRIP Assisted Dual Phase)

S. P. Keeler, Met. Prog., October 1966, pp. 148-153

K.S. Chung, M.G. Lee / Basics of Continuum Plasticity

Hardening law

- Ludwick: $\overline{\sigma} = \overline{\sigma}_y + K\overline{\varepsilon}^n$ Hollomon: $\overline{\sigma} = K\overline{\varepsilon}^n$
- **Yield surface** \rightarrow **Expansion**
- Swift: $\overline{\sigma} = K(\varepsilon_0 + \overline{\varepsilon})^n$ - *Voce*: $\overline{\sigma} = \overline{\sigma}_0 - ex p(-n(\overline{\varepsilon} - \varepsilon_0)) \dots$

M-K model is based on initial defect and assumes plastic localization occurs

	Cantor	TWIP	TRIP	TADP
Yield stress(MPa)	307	279	291	300
Ultimate stress(MPa)	679	699	798	870
Uniform elongation	0.32	0.45	0.46	0.42
R-value	0.86	0.96	1.01	1.09

Uniform elongation 1

Cantor < TADP < TWIP < TRIP

Strain hardening 1

Cantor < TWIP < TRIP < TADP

TRIP and **TADP** are expected to have the good formability

• Material properties: 1) Uniaxial tensile test according to rolling direction (RD, TD, 45D)

Displacement(mm)

- Young's modulus E(GPa) | Cantor : 180.92 / DP : 180.00 / TWIP : 198.21 / TRIP : 188.02
- Poisson's ratio | Cantor : 0.25 / DP : 0.32 / TWIP : 0.28 / TRIP : 0.31
- Von Mises isotropic yield function
- Hardening law : Swift, Voce(better result)

Swift hardening law $\overline{\sigma} = \mathbf{k} (\overline{\epsilon}_p + e_0)^n$					
k e ₀ n					
Cantor	1462.31	0.0261	0.4077		
TWIP	1632.66	0.0471	0.5479		
TRIP	1892.71	0.0445	0.5770		
TADP 2111.97 0.0564 0.6050					

Voce hardening law $\overline{\sigma} = \sigma_0 + R(1 - e^{-b\overline{\epsilon}_p})$					
σ ₀ R b					
Cantor	355.67	793.36	4.1480		
TWIP	322.91	1239.83	2.1954		
TRIP	337.63	1587.39	1.9056		
TADP	387.86	1850.02	1.7314		

FE analysis result with Voce hardening law was chosen for further analysis

Displacement(mm)

⁻ Thickness of specimen(mm) | Cantor : 1.38 / DP : 1.48 / TWIP : 1.38 / TRIP : 1.52

Yield 2000 criteria was chosen for further FEM simulation.

- Material properties: Simulation factors
- hardening law: Voce

$$\overline{\boldsymbol{\sigma}} = \boldsymbol{\sigma}_{0} + \boldsymbol{R} \left(1 - \boldsymbol{e}^{-\boldsymbol{b}\overline{\boldsymbol{\varepsilon}}_{p}} \right) \quad \text{or } \overline{\boldsymbol{\sigma}} = A - Bexp(-C\overline{\boldsymbol{\varepsilon}}), \text{ with } B = \exp(n\varepsilon_{0})$$

	Hardening law	A(S0)	B(R)	C(B)
Cantor	Voce	310	747.0954	5.516197
TWIP	Voce	322.9056	1239.834	2.195402
TRIP	Voce	337.6338	1587.389	1.905647
Dual Phase	Voce	387.8632	1850.025	1.731408

• Yield function: Yield 2000

	Yield function	A1	A2	A3	A4	A5	A6	A7	A8
Cantor	Yield 2000	1.044313	0.900592	1.063173	0.981113	0.997253	0.978494	0.986111	0.956883
TWIP	Yield 2000	0.964852	1.048262	0.969563	1.010907	1.004901	0.998649	1.014691	1.050405
TRIP	Yield 2000	0.975463	1.043968	0.975509	1.008013	1.002224	1.003852	1.003332	0.999599
Dual Phase	Yield 2000	1.000951	1.011217	1.001635	0.99864	0.997925	1.005233	1.007512	0.995052

Forming Limit Diagram by Simulation : TADP > TRIP > TWIP > Cantor

Forming Limit Diagram of commercial alloys

CCAs Forming Limit Diagram comparison with commercial alloys

Cantor

TWIP

ESP Stak Research Govoup

TRIP

TADP

Formability *measurement method 2*: Limit Dome Height test

Formability is determined by relative value of Limit Dome Height

Formability *measurement method 2*: Limit Dome Height test

Limit Dome Height(LDH) test is stopped right after fracture occur

ESPark Research Group

Results(*measurement method 2*): Limit Dome Height test

TWIP(10.95mm)>TRIP(9.68mm)>Cantor(8.195mm)>TADP(7.98mm)

Comparison uniaxial Tensile test and Limit Dome Height Test

Fracture test: Concept of Triaxiality

Triaxiality(
$$\eta$$
) = $\frac{\sigma_m}{\sigma_{eq}} = \frac{\frac{1}{3}(\sigma_1 + \sigma_2 + \sigma_3)}{\frac{1}{\sqrt{2}}\sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 + 6[(\sigma_{12})^2 + (\sigma_{23})^2 + (\sigma_{13})^2]}}$

 $\sigma_m = ext{hydrostatic stress}$ $\sigma_{eq} = ext{von Mises equivalent stress}$

Stress triaxiality (η) represented stress state by the scalar value

By changing the triaxiality, the stress state applied to the material can be adjusted

Fracture test: Example of specimen(2024 Aluminum alloy)

International Journal of Mechanical Science 46 (2004) 81-98

Pure shear

•

Triaxiality: $0 \sim 0.02$

Combined shear & tension

Triaxiality: 0.04 ~ 0.15

Circular hole (tensile loading)

• Triaxiality: 0.33

ESPark Research Group

Fracture test: Finite element(Central hole, Notched test)

FE model

- Software : abaqus/standard
- Quarter symmetry model
- Element type : 8node brick element with reduced integration (C3D8R)
- Element size at critical point : 0.05mm x 0.05mm x (thickness/16)
- Number of element : CH – 14672 / NT – 17632
- Number of node : CH - 16853 / NT - 20032

Triaxiality(
$$\eta$$
) = $\frac{\sigma_m}{\sigma_{eq}}$
= $\frac{\frac{1}{3}(\sigma_1 + \sigma_2 + \sigma_3)}{\frac{1}{\sqrt{2}}\sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 + 6[(\sigma_{12})^2 + (\sigma_{23})^2 + (\sigma_{13})^2]}}$

Notched test

Central hole

ESPark Research Group

Fracture test: Experimental setup

Mechanical test conditions				
Frame Instron 8801				
Load cell capacity	100kN			
Test speed 1mm/min				
DIC conditions				
DIC type : S	Stereo DIC			
Software	VIC-3D 7			
CCD resolution (pixcels)	2448 x 2048			
CCD sensor	2/3 inch grey scale			

Notched test

2mm

FE analysis of **η** of Central hole test: uniaxial stress state

X: Onset of fracture

With increasing equivalent strain, stress triaxiality $(\eta)=0.33$ is maintained in Central hole test

FE analysis of η of Notched test: uni - biaxial stress state

X: Onset of fracture

With increasing equivalent strain, η changes from 0.56 to 0.66

Comparison of Central hole and Notched test equivalent strain

For Phase transformation materials, equivalent strain is decreased

Fracture test: interrupt test at equivalent strain = 0.3

- equivalent plastic strain
 - Central hole

Displacement at equivalent strain = 0.3

	Central hole	Notched test
Cantor	1.133mm	2.517mm
TWIP	1.326mm	3.508mm
TRIP	1.388mm	3.565mm
Dual Phase	1.268mm	3.113mm

Identify displacement corresponding to $\varepsilon_{eq} = 0.3$ in each stress state

Fracture test: interrupt test at equivalent strain = 0.3

Fracture test was interrupted to compare the deformation behavior

Deformation behavior depending on stress state: TWIP

K. Renard et al. / Scripta Materialia 66 (2012) 966-971

Thickness of twins, influences their plastic behavior

Interrupted Fracture test: TWIP

Central hole : stress state(η=0.33)

Notched test : stress state(η =0.33~0.66)

Interrupted Fracture test: Central hole test(TWIP)

Electron channeling contrast imaging(ECCI) 2m of TWIP Central hole test 1 0 ٠ 0 £ 2 0 50µm 2 1.79µm 1.35µm 1.06µm 4.75µm 1.67µm 2.33µm 2.23µm 1.61µm 2.11µm 2.87µm 2.25µm 1.90µm 2.03µm 10um 10um

For central hole test(η =0.33), thickness of twins = 2.139 μ m ± 1 μ m

Interrupted Fracture test: Notched test(TWIP)

 Electron channeling contrast imaging(ECCI) of TWIP Notched test

(1)

For Notched test(η =0.33~0.67), thickness of twins = 2.03 μ m ± 0.73 μ m

ESPark Research Group

2m

Interrupted Fracture test: TWIP

Twinning thickness of central hole and notched test is similar

ESPark Research Group

Phase map of TRIP

Martensite(ε)

33%

Central hole : stress state(η=0.33)

Notched test : stress state(η=0.33~0.66)

Phase transformation is occurred more easily in **central hole**

20%

Martensite(ε)

60.3%

Central hole : stress state(η=0.33)

Notched test : stress state(η =0.33~0.66)

Phase transformation is occurred more easily in **central hole**

54.5%

Interrupted Fracture test: TRIP & TADP

Additional plastic flow is obtained by M transformation in uniaxial stress state

ESPark Research Group

Summary – deformation behavior difference depending on stress state

Composition of designed CCAs

#	Note	Composition	Deformation mechanism
-	Cantor	Cr ₂₀ Mn ₂₀ Fe ₂₀ Co ₂₀ Ni ₂₀	Dislocation gliding
1	CCA19	$Cr_{20}Mn_{19}Fe_{21}Co_{21}Ni_{19}$	
2	CCA18	$Cr_{20}Mn_{18}Fe_{22}Co_{22}Ni_{18}$	
3	CCA17	$Cr_{20}Mn_{17}Fe_{23}Co_{23}Ni_{17}$	
4	CCA16	$Cr_{20}Mn_{16}Fe_{24}Co_{24}Ni_{16}$	
5	CCA15	$Cr_{20}Mn_{15}Fe_{25}Co_{25}Ni_{15}$	
-	TWIP	$\mathrm{Cr}_{20}\mathrm{Mn}_{14}\mathrm{Fe}_{24}\mathrm{Co}_{24}\mathrm{Ni}_{16}$	Twinning
6	CCA13	$Cr_{20}Mn_{13}Fe_{27}Co_{27}Ni_{13}$	
7	CCA12	$Cr_{20}Mn_{12}Fe_{28}Co_{28}Ni_{12}$	
8	CCA11	$Cr_{20}Mn_{11}Fe_{29}Co_{29}Ni_{11}$	
-	TRIP	Cr ₂₀ Mn ₁₀ Fe ₃₀ Co ₃₀ Ni ₁₀	Phase transformation
-	TADP	Cr ₂₀ Mn ₈ Fe ₃₂ Co ₃₂ Ni ₈	Phase transformation

New series of CCAs is designed by changing the composition

True stress strain curve of designed CCAs

Uniform elongation summary of designed CCAs

Deformation mechanism of designed CCA

Summary - Designed CCAs with enhanced formability

Conclusion

Thank you for your kind attention