Chapter 3. Understanding the Supply Process: Evaluating Process Capacity

Basic Process Vocabulary

- Inventory: The number of flow units in the system
- Activity times: how long does the worker spend on the task?
- **Capacity**=1/activity time: how many units can the worker make per unit of time If there are *m* workers at the activity: Capacity=*m*/activity time
- Bottleneck: process step with the lowest capacity
- Process capacity: capacity of the bottleneck
- Flow rate =Minimum{Demand rate, Process Capacity)
- Utilization =Flow Rate / Capacity (a measure of how much the process actually produces relative to how much it could produce if it were running at full speed)
- Flow Time: The amount of time it takes a flow unit to go through the process

Making hot dogs (http://www.youtube.com/watch?v=moM1s3cltTc)

Slide 3

Process data

- 2 grinders
- 22,000 dogs per batch
- 5 minutes to load and grind
- 6 mixers
- 22,000 dogs per batch
- 1/3 hour to mix
- 3 machines
- 2,300 dogs per minute per machine

- 17 inspection stations
 Each inspector requires only 1/6th of
- a second to inspect each dog
- 8 peelers
- 700 dogs per minute per peeler
- 5 ovens
- Each oven holds
- 15,000 dogs
- Each dog spends 15 minutes in process

Capacity calculations – grind, mix, stuff

- Find the *capacity* of each process step, which is the <u>maximum</u> flow rate (*R*) through that process step.
- Express each process step's capacity in the same units
 - You can choose any time length you want (e.g., dogs / min, dogs / day, lbs / second), but you must be consistent.
 - We'll choose dogs / min.
- Grind:
 - Each grinder = 22,000 dogs / 5 min = 4,400 dogs / min
 - 2 grinders x 4,400 dogs / min = 8,800 dogs / min

- Mix:
 - Each mixer = 22,000 dogs/ (1/3 hour x 60 min / hour) = 1,100 dogs / min
 - 6 mixers x 1,100 dogs / min = 6,600 dogs / min

Capacity calculations - stuff, cook, peel, inspect

- Stuff:
 - 3 stuffers x 2,300 dogs / min = 6,900 dogs / min
- Cook and flavor:
 - To find *R*, use Little's Law, R = I / T
 - I = 15,000 dogs, T = 15 min
 - -R = 15,000 dogs / 15 min = 1,000 dogs / min
 - 5 ovens x 1,000 dogs / min = 5,000 dogs / min
- Peeler
 - 8 peelers x 700 dogs / min = 5,600 dogs / min
- Inspection
 - 1/6 sec / dog = 6 dogs / sec
 - 17 stations x 6 dogs / sec x 60 sec / min = 6,120 dogs / min

Capacity of the entire process

- The capacity of a process is the <u>minimum</u> capacity of the sub processes:
 - This process cannot produce any more than 5,000 dogs / min on a consistent basis.
 - The sub process that constrains the entire process is called the *bottleneck*.

Capacity of the entire process – cont.

- For this process, the flow rate, *R*, is 5,000 dogs / min
- This process can also produce 5,000 dogs / min x 60 min / hour = 300,000 dogs/ hour

Utilization vs. Implied Utilization

- Utilization=Flow Rate/Capacity (≤ 100%)
- Implied Utilization=Demand Rate (or Work Load) /Capacity (≤100% or > 100%)
- → Captures the mismatch between what could flow through and what the resource can provide.

Utilization vs. Implied Utilization

Table 3.3 (sufficient market demand) vs
 Table 3.4 (125 tons/hour)
 (Remark) Are there several bottlenecks in Table 3.4?

Process Step	Calculations	Implied Utilization	Utilization
Preheater	125/120	104.2%	83.3%
Lock hoppers	125/110	113.6%	90.9%
First reactor	125/112	111.6%	89.3%
Second reactor	125/100	125% 👬	100.0%
Flash heater	125/135	92.6%	74.1%
Discharger	125/118	105.9%	84.7%
Briquetting machine	125/165	75.8%	60.6%
Total process	125/100	125%	100%

Steps for Basic Process Analysis with Multiple Types of Flow Units

- 1. For each resource, compute the number of minutes that the resource can produce
- 2. Create a process flow diagram, indicating how the flow units go through the process
- 3. Create a table indicating how much workload each flow unit is consuming at each resource
- 4. Add up the workload of each resource across all flow units.
- 5. Compute the implied utilization of each resource as

Implied Utilization=
$$\frac{Result of Step 4}{Result of Step 1}$$

The resource with the highest implied utilization is the bottleneck.

Process analysis with different types of flow units

Employment Verification Agency

- Three types of job applications need to be processed: "Consulting", "Staff" and "Internship"
- There are inventory buffers in front of each resource/task (not shown)
- Each type of application has its own path through the process and does not necessarily visit all tasks.

Defining the common flow unit

- Define the **common flow unit** so that:
 - (1) The capacity of each task can be expressed in terms of the "flow unit" per unit of time.
 - (2) Demand can be expressed in terms of the "flow unit".
- An intuitive and natural flow unit for this process is an "application":
 - Given that an "application" is the flow unit ...
 - The capacity of each task should be defined in terms of "applications per unit time".
 - Demand should be expressed in terms of "applications per unit time"

Demand and capacity

			Applications per hour
		Consulting	3
•	Demand data (given to us):	Staff	11
		Internship	4

• Staffing and processing time data (given to us) and capacity calculations:

		Contact faculty	Contact employers	Benchmark grades	Decision letter
Data:					
Number of workers	(a)	2	3	2	1
Processing time (min/app)	(b)	20	15	8	2
Calculations:					
Capacity per worker (app/min)	(c = 1/b)	0.05	0.07	0.13	0.50
Task's capacity (app/min)	(d = a x c)	0.10	0.20	0.25	0.50
Task's capacity (app/hour)	(d x 60)	6	12	15	30

Evaluating implied utilization

Data:		Contact faculty	Contact employers	Benchmark grades	Decision letter
Consulting demand (app/hour)		3	3	0	3
Staff demand (app/hour)		0	11	0	11
Internship demand (app/hour)		0	0	4	4
Calculations					
Total Demand (app/hour)	(a)	3	14	4	18
Task's capacity (app/hour)	(b)	6	12	15	30
Implied Utilization	(a/b)	50%	117%	27%	60%

- Evaluate the total workload on each task:
 - For example, "Contact employers" receives 14 apps/hr.
- **Implied utilization** is the ratio of demand on a task to its capacity.
- The task with the highest implied utilization is the **bottleneck**.

Defining a different flow unit – one minute of work

- Define the flow unit to be "one minute of work":
 - Demands and capacity should then be expressed in terms of "minutes of work".
- Consider the "Contact employers" task:
 - Recall:
 - Demand on this task is 14 applications per hour.
 - Each application requires 15 minutes of work.
 - So demand on this task each hour is 14 x 15 = 210 minutes of work

Defining a different flow unit – one minute of work

Dete:		Contact faculty	Contact employers	Benchmark grades	Decision letter
					4.0
Total Demand (app/hour)	(a)	3	14	4	18
Processing time (min/app)	(b)	20	15	8	2
Number of workers	(c)	2	3	2	1
Calculations					
Total Demand (min/hour)	(d = a x b)	60	210	32	36
Task's capacity (min/hour)	(e = c x 60)	120	180	120	60
Implied Utilization	(d/e)	50%	117%	27%	60%

- Defining the flow unit as "one minute of work" yields the same implied utilizations as defining the flow unit as "one application".
- In other words, the implied utilization does not depend on how the flow unit is defined as long as all demands and capacities are defined with the same flow unit.

Summary

- In a process with a series of tasks:
 - The bottleneck's capacity determines the maximum flow rate through the process.
- Adding capacity to the bottleneck will increase the capacity of the total process, but may cause the bottleneck to move to another task/resource.
- Line balancing (i.e., reallocating tasks from the bottleneck to another resource) can improve the capacity of the total process without adding resources.
- Integrating work improves line balancing.
- Implied utilization of a resource can be evaluated even if there are different types of flow units.