

457.562 Special Issue on River Mechanics (Sediment Transport) .04 Sediment Properties

Prepared by Jin Hwan Hwang

Suspended particles

1. Introduction

- As noted in the previous lecture, the solid phase of the pr oblem embodied in sediment transport can be any granul ar substances.
- In terms of geophysical application, however, the granula r substance in question typically consists of fragments ult imately derived from rocks – hence the name " sediment transport
- Important properties of particles,
 - Types
 - Size distributions
 - Porosity
 - Shape

2. Rock Types

- The most common rock type (in the river or coastal envir onment) is quartz
 - Highly resistant rock, can travel long distances or remain i n place for long periods of time without losing its integrity
 - Another highly resistant one is feldspar
- Limesotone
 - Not a resistant, tends to abrade to silt rather easily, silt-size d limestone particles are susceptible to solution.
 - It cannot be found far from the source (mountain area)
- Basaltic rocks: Volcanic, heavier.
 - Much less common
 - Granite

3. Model Laboratory Sediments

- How about Han-river? slope, bankfull depth, width, and t he size of sediment?
- Can you reduce size of it? What based on?
 - Froude Number and Reynolds number
- What do you think about sediment? Do you think that it c an move?
- 5µm sediment (reduced size of boulder (0.5m in real fiel d)) cannot move
 - It is almost cohesive, viscous effects can be expected to b e greatly exaggerated due to the small size.
 - The net result is a model sediment that is much less mobil e that it ought to be and, in addition, behaves in ways radic ally different from the prototype

3. Model Laboratory Sediment

- Artificial sediment with a low specific gravity
 - Let ρ denote the density of water, and $~\rho_s$ denote the specific gravity of the material in question.
 - The weight W of a particle of volume V_p is given by

$$W = \rho_s g V_p$$

- Where g is the acceleration of gravity.
- Example
 - Coal (γ :=1.3) for quartz (γ =2.65)
 - The coal grain would be only 1.3/2.65=0.49 times the weig ht of the quartz grain. (so almost twice mobile)

3. Model Laboratory Sediment

- But, the effective weight determining the mobility of a grain is the submerged weight W_s, actual weight minus the buoy ant force associated with the hydrostatic pressure distributi on about particle.
- R is the submerged specific gravity.

$$W_{s} = (\rho_{s} - \rho)gV_{p} = \rho RgV_{p}$$

Where $R = \left(\frac{\rho_{s}}{\rho} - 1\right)$
- Comparing coal and quartz,
 $\frac{(W_{s})_{coal}}{(W_{s})_{quartz}} = \frac{(R)_{coal}}{(R)_{quartz}} = \frac{0.30}{1.65} = 0.18$

- It follows that under water, the coal grain is 1/0.18=5.5 time s lighter than a quartz grain of the same size.
- But, still hard to realize the sediment in the laboratory.

4. Specific Gravity

 Some typical specific gravities for various natural and arti ficial sediments.

Rock type or material	Specific gravity ρ _s /ρ
quartz	$2.60 \sim 2.70$
limestone	$2.60 \sim 2.80$
basalt	$2.70 \sim 2.90$
magnetite	3.20 ~ 3.50
plastic	$1.00 \sim 1.50$
coal	$1.30 \sim 1.50$
walnut shells	$1.30 \sim 1.40$

5. Size

- D in this course denotes sediment size, the typical units of which are millimeters or microns.
- Another standard way of classifying grain sizes is the se dimentological Φ scale, according to which

$$D = 2^{-\Phi}$$
$$\Phi = -\log_2(D) = -\frac{\ln(D)}{\ln(2)}$$

- Note that Φ=0 corresponding to D=1mm.
- It is convenient for the finer material description.
- Negative means larger.

Φ scale

Class Name	Size Range			Approximate Sieve Mesh Openings per Inch		
	Millimeters	Φ	Microns	Inches	Tyler	U.S. standard
Very large boulders	4,096 ~ 2,048			$160 \sim 80$		
Large boulders	2,048 ~ 1,024			$80 \sim 40$		
Medium boulders	1,024 ~ 512			$40 \sim 20$		
Small boulders	$512 \sim 256$	$-9 \sim -8$		$20 \sim 10$		
Large cobbles	256~ 128	$-8 \sim -7$		10 ~ 5		
Small cobbles	128 ~ 64	$-7 \sim -6$		5~2.5		
Very coarse gravel	64 ~ 32	$-6 \sim -5$		$2.5 \sim 1.3$		
Coarse gravel	$32 \sim 16$	$-5 \sim -4$		$1.3 \sim 0.6$		
Medium gravel	16~8	$-4 \sim -3$		$0.6 \sim 0.3$	$2 \sim 1/2$	
Fine gravel	8~4	$-3 \sim -2$		$0.3 \sim 0.16$	5	5
Very fine gravel	4~2	$-2 \sim -1$		$0.16 \sim 0.08$	9	10
Very coarse sand	$2.000 \sim 1.000$	$-1 \sim 0$	2,000 ~ 1,000		16	18
Coarse sand	$1.000 \sim 0.500$	0~1	1,000 ~ 500		32	35
Medium sand	$0.500 \sim 0.250$	$1 \sim 2$	$500 \sim 250$		60	60
Fine sand	$0.250 \sim 0.125$	2~3	250~125		115	120
Very fine sand	0.125 ~ 0.062	3~4	125 ~ 62		250	230
Coarse silt	0.062 ~ 0.031	4~5	62 ~ 31			
Medium silt	0.031 ~ 0.016	5~6	31 ~ 16			
Fine silt	0.016 ~ 0.008	6~7	16 ~ 8			
Very fine silt	$0.008 \sim 0.004$	7~8	8~4			
Coarse clay	0.004 ~ 0.0020	8~9	4~2			
Medium clay	0.0020 ~ 0.0010		2 ~ 1			
Fine clay	$0.0010 \sim 0.0005$		$1 \sim 0.5$			
Very fine clay	$0.0005 \sim 0.00024$		$0.5 \sim 0.24$			

SOURCE: Adapted from Vanoni, 1975.

The utility of a logarithmic scale (phi) for grain size now b ecomes apparent. Consider a sediment sample in which one-third of the material lies in the range 0.1~1.0mm, on e-third lies in the range 1.0~10 mm, and one-third lies in the range 10~100 mm.

- Left one is linear and light one is logarithmic.
- Left one is virtually unreadable as finest two ranges are c rowded off the scale.
- Right one provides a useful and consistent characterizati on of the distribution.
- Now, in the statistics, Φ is rather than D.

The size density of a heterogeneous sample *p*(Φ) is defined such *p*(Φ)*d*Φ denotes the fraction of material in the size range (Φ,Φ+dΦ)

$$p(\Phi)d\Phi = p_f(\Phi + d\Phi) - p_f(\Phi)$$

$$p(\Phi) = \frac{dp_f}{d\Phi}$$

 The size distribution p_f(Φ) and size density p(Φ) by we ight can be used to extract useful statistics concerning the sediment in question

X denotes some percentage, (e.g., 50%); the grain size
 Φ_x denotes the size such that x% of the weight of the sa
 mple is composed of finer grains.

• That is
$$p_f(\Phi_x) = \frac{x}{100}$$

The corresponding grain size

$$D_x = 2^{-\phi_x}$$

• Common grain size for using is D_{50} , and D_{90} (the sample by weight consists of finer grains) used for characterizing bed roughness.

- Size density can be used to extract statistical moments.
- 1st moment, 2n moment.....

$$\phi_m = \int \phi p(\phi) d\phi$$
 $\sigma^2 = \int (\phi - \phi_m)^2 p(\phi) d\phi$

 The corresponding geometric mean diameter and geome tric standard deviation are given as

$$D_g = 2^{-2\phi_m} \qquad \sigma_g = 2^{\sigma}$$

- A perfectly uniform material, $\sigma=0$ and $\sigma_g=1$.
 - $\sigma_g < 1.3$ Can be treated as "uniform material"
 - $\sigma_g > 1.6$ Can said to be "poorly sorted"

- The continuous function must be fascinate, but we canno t get this function by measurement or sampling.
- Generally all data should be discretized

• From *i* to *n*:
$$\overline{\phi}_i = \frac{1}{2}(\phi_i + \phi_{i+1})$$

 $P_i = P_f(\phi_i) - P_f(\phi_{i+1})$
• Discretize: $\phi_m = \int \phi p(\phi) d\phi$ $\sigma^2 = \int (\phi - \phi_m)^2 p(\phi) d\phi$
 $\phi_m = \sum_{i=1}^n \overline{\phi}_i p_i$ $\sigma^2 = \sum_{i=1}^n (\overline{\phi}_i - \phi_m)^2 p_i$

1

 For a perfectly Gaussian distribution, the mean and medi an sizes coincide:

$$\phi_m = \phi_{50} = \frac{\phi_{84} + \phi_{16}}{2}$$
 $\phi_m = \frac{\phi_{84} + \phi_{16}}{2}$ and $\sigma = \frac{\phi_{84} - \phi_{16}}{2}$

• Why? 84 and 16?

Rearranging the previous relations with

 $D_{x} = 2^{-\phi_{x}} \qquad D_{g} = 2^{-2\phi_{m}} \qquad \sigma_{g} = 2^{\sigma}$ $\sigma_{g} = \left(\frac{D_{84}}{D_{16}}\right)^{1/2} \qquad D_{g} = \left(D_{84}D_{16}\right)^{1/2}$

 Keep in mind that the above equations only for the Gaus sian distribution not works for natural field.

6.0 Grain sizes

• The log normal probability density function is given by $f(\phi)$

$$f(\phi) = \frac{1}{\sigma_{\phi}\sqrt{2\pi}} \exp\left[-\frac{(\phi - \mu_{\phi})^2}{2\sigma_{\phi}^2}\right]$$

- When μ_{ϕ} is the mean grain size in phi unit
- σ_{ϕ} is the standard deviation in size

$$p\left[\phi < \phi_g\right] = \int_{-\infty}^{\phi_g} f(\phi) d\phi$$

- The probability that a sand size is coarser than a give size ϕ_g
- Statistics of the sand sizes
 - 1. Mean
 - 2. Standard deviation (STD)
 - 3. Skewness
 - 4. Kurtosis

6.0 Grain sizes (mean)

- One common measure of sand sample is d_{50} or ϕ_{50}
 - Directly from the cumulative distribution curve
 - According to normal probability theory, 68 % of all sizes will be within plus or minus one STD of the mean
 - Therefore phi sizes of ϕ_{84} and ϕ_{16} are important (= $\phi_{50+64/2}$)

$$M_{d\phi} = \frac{\left(\phi_{84} + \phi_{16}\right)}{2} \qquad (mean \ diameter)$$
$$M_{d\phi} = \frac{\left(\phi_{84} + \phi_{50} + \phi_{16}\right)}{3} \qquad (bi - \text{mod } al \ diameter)$$

6.0 Grain sizes (STD)

- Sorting
 - Poorly sorted sample -> wide range of size
 - Well sorted sample -> all most same size
 - Numerical measure of sorting is STD (σ_{ϕ})

$$\sigma_{\phi} = \frac{\left(\phi_{84} - \phi_{16}\right)}{2}$$

- Poorly graded -> well sorted
- Well graded -> Poorly sorted
- Perfectly sorted sand : Homogeneous in size $\phi_{84}=\phi_{16}, \ \sigma_{\phi}=0$
- In realistic σ_{ϕ} <0.5 is well sorted and >1 is poorly sorted

6.0 Grain sizes (Skewness)

- Sediment size distribution, symmetry
 - Negative skewness:
 - Small phi size -> larger grain sizes
 - Indicator of an erosive environment
 - Positive skewness
 - Depositional environment

$$\alpha_{d\phi} = \frac{M_{d\phi} - \phi_{50}}{\sigma_{\phi}}$$
$$M_{d\phi} = \frac{(\phi_{84} + \phi_{16})}{2}$$

6.0 Grain sizes (Kurtosis)

Kurtosis - Peakedness

$$\beta_{\phi} = \frac{(\phi_{16} - \phi_5) + (\phi_{95} - \phi_{84})}{2\sigma_{\phi}}$$

- For normal distribution β_{ϕ} =0.65
- If spread out wider than the normal distribution, the Kurtosis will be less than 0.65

6.0 Grain sizes (Example)

%	d(mm)	ϕ
16	0.4	1.32
50	0.32	1.64
84	0.27	1.89

- D₅₀ = 0.32mm or 1.64 φ (표 참조)
- Mean grain size $M_{d\phi} = \frac{\phi_{16} + \phi_{84}}{2} = \frac{1.89 + 1.32}{2} = 1.61\phi$
- Sorting (well sorted)

$$\sigma_{\phi} = \frac{\phi_{84} - \phi_{16}}{2} = 0.285\phi$$

Skewness $\alpha_{\phi} = \frac{M_{\alpha\phi} - \phi_{50}}{\sigma_{\phi}} = \frac{1.61\phi - 1.64\phi}{0.285\phi} = -0.081$ – Larger grain sizes are slightly more prevalent

7. Porosity

 The porosity quantified the fraction of a given volume of sediment which is composed of void space. That is

 $\lambda_p = \frac{\text{Volume of voids}}{\text{Volume of total space}}$

- In the case of well-sorted sand, the porosity can often ta ke values between 0.3 and 0.4. Gravels tend to be more poorly-sorted.
- Consolidation depends on the porosity.
- Porosity is important for ecological issue as like as habit at.

8. Shape

Rod a \gg b - c

- 1. Fall velocity
 - $w_p = \overrightarrow{w} V_s$
 - $Drag=f(v_s, D_s, v, \rho_s, \rho)$

Where

- $v_s = Fall velocity$
- ρ = Fluid density
- ρ_s = Sediment density
- v = Kinematic viscoisty of fluid
- $D_s = \text{Diameter}$
- Dimensional analysis (pi theorem):
 - Six parameters 3 dimensions = 3 dimensionless group

Choose three repeated variables

$$(\rho, D_s, v_s) = \left(\left[\frac{M}{L^3} \right], L, \left[\frac{L}{T} \right] \right) \Rightarrow (Mass, Length, Time)$$

First dimensionless number

$$\begin{aligned} \pi_{1} &= f_{1}(\rho, D_{s}, v_{s}, f_{D}(drag \ force)) \\ M^{0}L^{0}T^{0} &= [\rho]^{a} [D_{s}]^{b} [v_{s}]^{c} [f_{D}]^{d} = (M^{a}L^{-3a})L^{b} (L^{c}T^{-c})(M^{d}L^{d}T^{-2d}) \\ &= M^{a+d}L^{-3a+b+c+d}T^{-c-2d} \\ a+d=0, \quad -3a+b+c+d=0, \quad -c-2d=0 \\ a=-d, \quad b+c=4a, \qquad c=2a, \quad b=2a \\ \pi_{1} &= [\rho]^{a} [D_{s}]^{2a} [v_{s}]^{2a} [f_{D}]^{-a} = f_{1} \left(\frac{f_{D}}{\rho v_{s}^{2} D_{s}^{2}}\right) \end{aligned}$$

- Second dimensionless number $\pi_2 = f_2(\rho, D_s, v_s, \rho_s)$ $\pi_2 = f(\rho_s / \rho)$
- Third dimensionless number $\pi_{3} = f_{3}(\rho, D_{s}, v_{s}, v)$ $M^{0}L^{0}T^{0} = [\rho]^{a} [D_{s}]^{b} [v_{s}]^{c} [v]^{d} = L^{b} (L^{c}T^{-c}) (L^{2d}T^{-d})$ $= L^{b+c+2d}T^{-c-d} \qquad c = -d, \quad b = -d$ $\pi_{3} = [D_{s}]^{d} [v_{s}]^{d} [v]^{-d} = f_{3} (\frac{D_{s}v_{s}}{v}) = f_{3}(R_{p})$

- 1. Fall velocity
- Then,

$$f\left(\frac{f_D}{\rho v_s^2 D_s^2}, \frac{\rho_s}{\rho}, \frac{D_s v_s}{v}\right) = 0$$

We already know that

$$f_D = \frac{1}{2} C_D \rho \frac{\pi D_s^2}{4} v_s^2, \qquad R = \frac{\rho_s - \rho}{\rho}, \qquad R_p = \frac{D_s V_s}{v}$$

So, $f(C_D(R_p), R) = 0$

- The fall velocity o sediment grains in water is determined by their diameter and density and by the viscosity of the water.
- Terminal velocity: fall velocity becomes constant when th e drag equals the submerged weight of the particle.

$$\frac{1}{2}C_{D}\rho\frac{\pi D_{s}^{2}}{4}v_{s} = \frac{4}{24}\pi D_{s}^{3}(\rho_{s}-\rho)g$$

Therefore, (Confirmed by dimensional analysis)

$$v_{s} = \sqrt{\frac{4}{3} \left(\frac{\rho_{s} - \rho}{\rho}\right) \frac{gD_{s}}{C_{D}}} = \sqrt{\frac{4}{3} \frac{gRD_{s}}{C_{D}}}$$
$$C_{D} = f(\mathbf{R}_{p}) = f\left(\frac{v_{s}D_{s}}{v}\right)$$

- In laminar flow, C_D = ²⁴/_{R_p}
 For very fine particles^p

$$v_s = \sqrt{\frac{4}{3}} v_s \frac{gR}{24} \frac{D_s^2}{v}$$
$$\frac{v_s^2}{v_s} = v_s = \frac{gRD_s^2}{18v}$$

$$C_{D} = \frac{24}{R_{p}} \left(1 + 0.152 R_{p}^{1/2} + 0.0151 R_{p} \right)$$

(More general form)

(Stokes' law for settling rate)

In general

$$R_{p} = \frac{v_{s}D_{s}}{v} = \frac{v_{s}}{\sqrt{gRD_{s}}} \cdot \frac{\sqrt{gRD_{s}}D_{s}}{v}$$
$$= R_{f} \cdot R_{ep}$$

 Diagram of R_f versus R_{ep} calculated from the drag coeffic ient for spheres.

 A useful empirical relation to estimate the kinematic visc osity of clear water

$$v = \frac{1.79 \times 10^{-6}}{1 + 0.03368T + 0.00021T^2} (m^2 / s)$$