

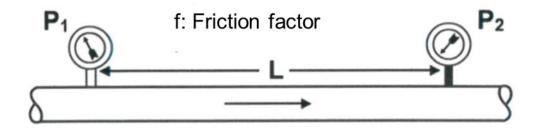
Flow Assurance

Gathering system

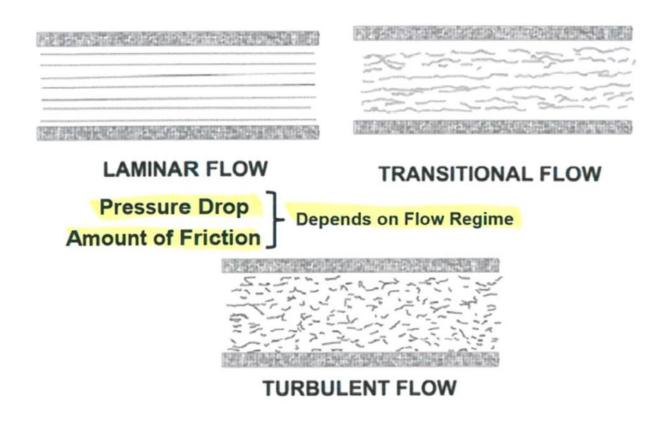
Pressure drop vs. Flowrate in oil field flowlines

d = Internal Diameter in Inches

Darcy – Weisbach Formula


Pressure drop expressed in feet of fluid head

$$h_{ft} = \frac{f L v^2}{D 2g}$$


Pressure drop expressed in psi

$$\Delta P = \frac{\rho f L v^2}{144 D 2g}$$
 g: correction factor not gravity accele

g: correction factor not gravity acceleration $(= 32.2 \text{ ft/s}^2 = 9.81 \text{ m/s}^2)$

Flow regime in pipe

- Gas dominant stream is mostly turbulent
- Flow regime determined by Reynolds number

Reynolds number

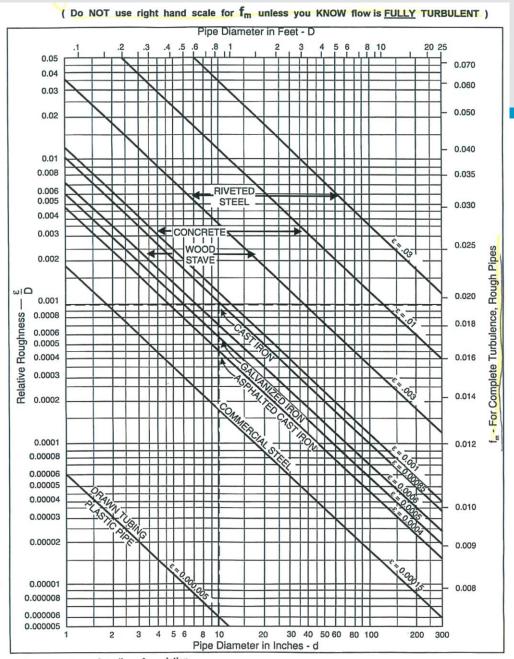
- Dimensionless parameter
 - : Ratio of Inertia forces to Viscous forces

$$R_e = \frac{\rho D v}{\mu_e}$$

$$\rho: lb/ft^3 D: ft v: ft/sec \mu_e: lb/ft-sec$$

• Re < 2000 = Laminar flow

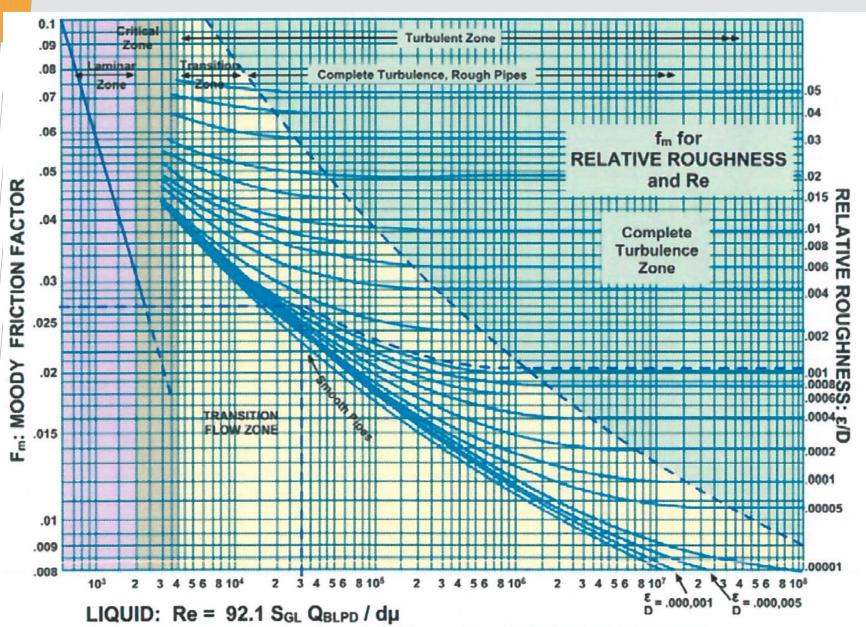
$$Liquid: Re = 92.1 \frac{SG_LQ_{BPD}}{d \mu}$$


$$Gas: Re = 20100 \frac{SG_G Q_{MMCFD}}{d \mu}$$

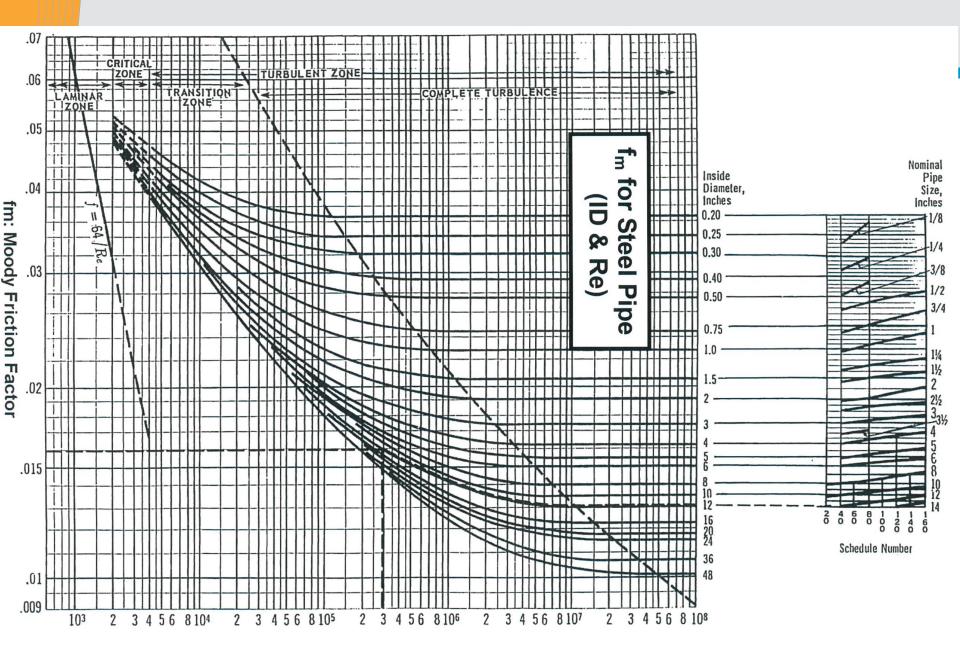
d: inches, µ: centipoise

Friction factor

• f = Dimensionless factor of proportionality f_m = Moddy friction factor f_f = Fanning fraction factor (f_f =1/4 f_m)


- Laminar flow: f_m = 64 / Re
- For transitional and turbulent flow
 - f_m a function of Re
 - Relative roughness: ε / D
- For complete turbulence
 - f_m a function of ϵ / D only

Gas Processors Suppliers Association


Note: Absolute Roughness units are in feet. Relative Roughness is Dimensionless.

 ϵ for Steel Pipe = 0. 00015 feet

GAS: Re = 20,100 SGg Q_{MMCFD} / dµ

Re: REYNOLDS NUMBER

Re: Reynolds Number

Pressure drop: Laminar flow (Re < 2000)

Liquid

$$\Delta P_{psi} = 0.00068 \frac{\mu_{cp} L_{ft} V_{ft/sec}}{d_{in}^2}$$

$$\Delta P_{psi} = 7.95 \times 10^{-6} \frac{\mu_{cp} L_{ft} Q_{BPD}}{d_{in}^4}$$

• Gas

$$\Delta P_{psi} = \frac{0.040 \ \mu_{cp} L_{ft} T_{^{\circ}R} Z Q_{MMCFD}}{P_{psi} d_{in}^4}$$

No " f_m " since $f_m = 64/Re$ and $Re = SG_L Q / d \mu$

Pressure drop: Transitional and Turbulent

Liquid

$$\Delta P_{psi} = 11.5 \times 10^{-6} \frac{f_m L_{ft} Q_{BPD}^2 SG_L}{d_{in}^5}$$

Gas

$$P_1^2 - P_2^2 = 25.1 \frac{f_m L_{ft} Q_{MMCFD}^2 S G_G Z T_R}{d_{in}^5}$$

Exercise ΔP : Liquid flow in Pipe

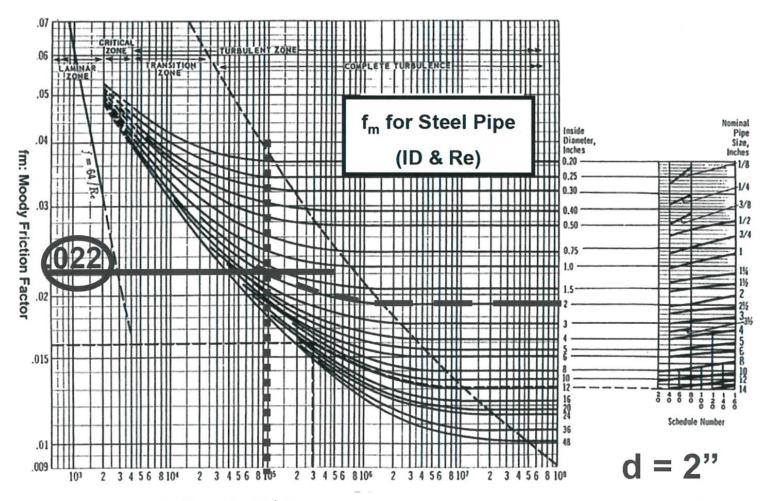
- What is the friction pressure drop in 10,000 ft of 2 inch ID pipe flowing 50 BPD of 35 °API crude oil (μ=1.2 cp and SG_I =0.85) ?
 - 1. First calculate Reynold's number to determine flow regime

:

2. Use the equation for

$$\Delta P_{psi} =$$

Exercise: Increasing flow rate 3000 BPD


1. First calculate Reynold's number to determine flow regime

:

2. Use the equation for

3. Determine f_m using chart

$$\Delta P_{psi} =$$

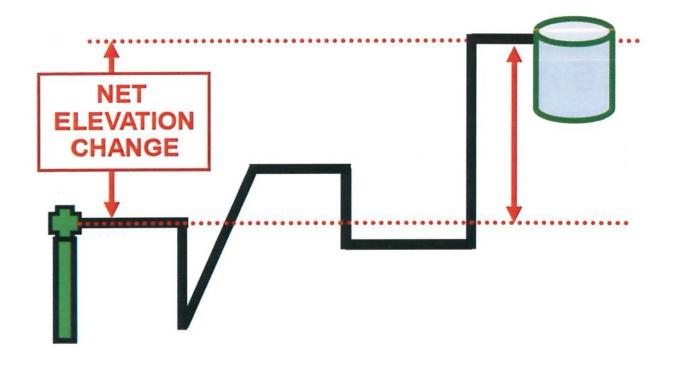
Re: Reynolds Number

LIQUID: Re = $92.1~SG_L~Q_{BLPD}~/~d~\mu$ GAS: Re = $20,100~SG_g~Q_{MMCFD}~/~d~\mu$

Re: = 97,856

Pipeline sizing Summary

Consider Fluid Velocity


- Noise / Corrosion / Erosion
- Liquid / Solids Build-Up
- Contain Internal Pressure

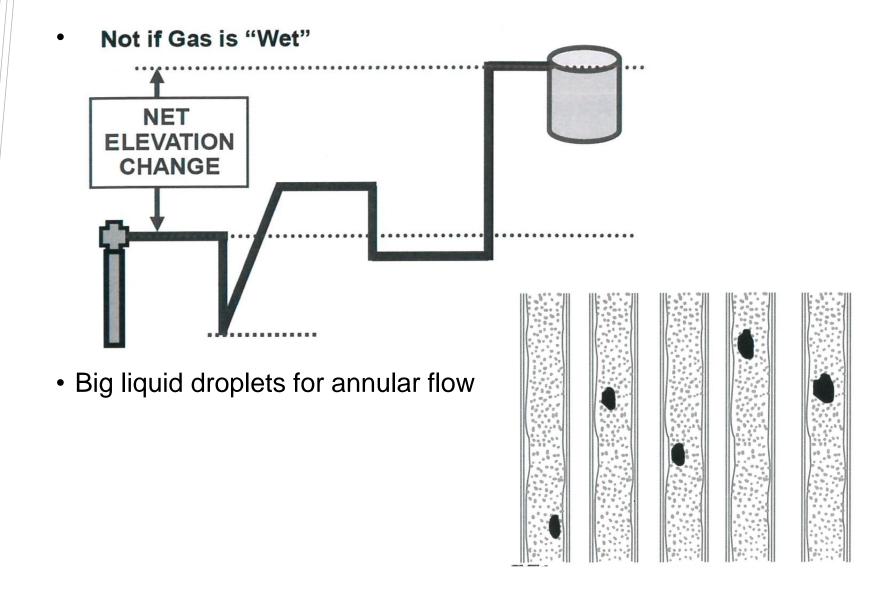
Pressure Drop: Horizontal Pipeline

Pipeline installation

What if pipeline is not horizontal?

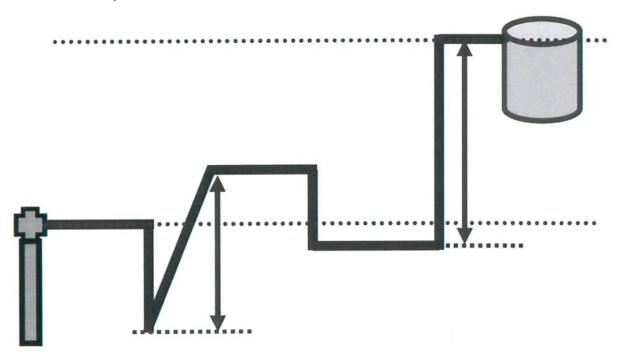
Pressure drop due to Elevation

Liquid: ΔP due to Elevation


$$\Delta P_{E(psi)} = \frac{\rho_{L(lb/ft^2)H_{E(ft)}}}{144} = 62.4 \frac{SG_LH_{E(ft)}}{144}$$
$$\Delta P_{E(psi)} = 0.433 SG_LH_{E(ft)}$$

Gas: ΔP due to Elevation

$$\Delta P_{E(psi)} = \frac{\rho_{G(lb/ft^{2})H_{E(ft)}}}{144} = 2.70 \frac{SG_{G}P_{psi}/T_{o_{R}}ZH_{E(ft)}}{144}$$


$$\Delta P_{E(psi)} = 0.188 \frac{SG_{G}P_{psi}}{T_{o_{R}}ZH_{E(ft)}}$$

Not always true for gas flow

Pressure drop for Wet gas

• Sum the "Ups"

Estimating ΔP without using Friction Factor

- Empirical equations
 - Useful for quick calculation before use of PCs
 - Commonly accepted empirical equations
 - : Hazen-Williams empirical equation (Liquid flow)

$$\Delta P = 0.7 \times 10^{-6} \frac{Q^{1.85} L \, SG_L}{d^{4.87}}$$

 $(\Delta P \text{ in psi}, Q \text{ in BLPD}, L \text{ in feet}, d = ID \text{ in inches})$

: Weymouth formula (gas flow)

$$P_2^2 = P_1^2 - \left[\frac{0.8 L_{ft} T_R Z S G_G Q_{MMCFD}^2}{d_{in}^{5.334}} \right]$$

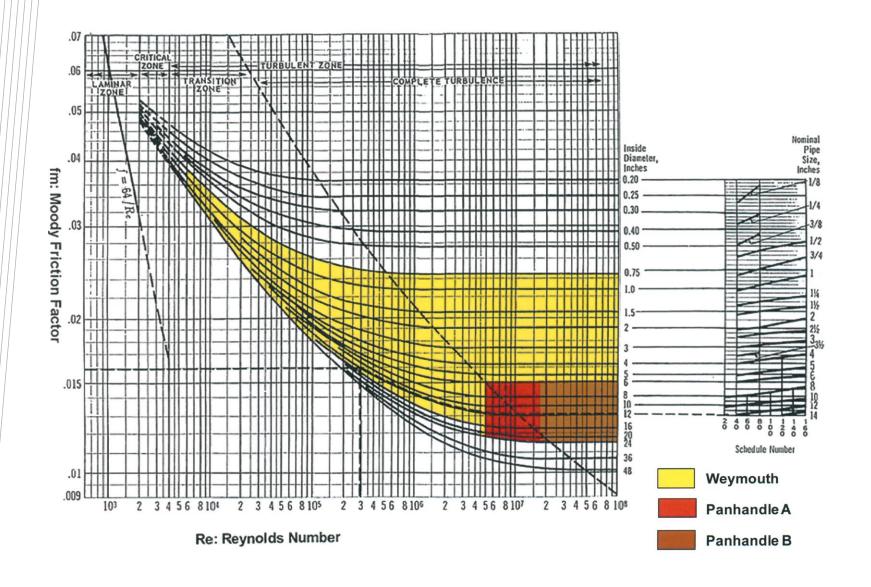
- most common for oil field use
- good for IDs between 0.75 inch & 16 inch
- at Laminar rates, calculated ΔP is too low
- : Panhandle empirical equation (gas flow)

Panhandle: A & B Empirical equation

For estimating ΔP without friction factor

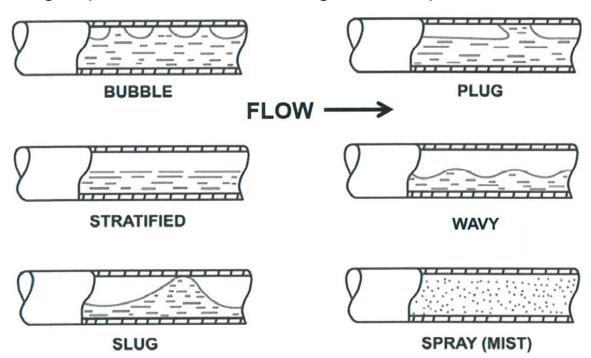
A:
$$Q_{MMCFD} = \left[\frac{0.020 E (P_1^2 - P_2^2)^{0.51} d^{2.62}}{(SG_G^{0.853} z T_{R} L_{mi})^{0.539}} \right]$$

- For IDs between 6 inch and 24 inch
- Re between 5*106 and 15*106

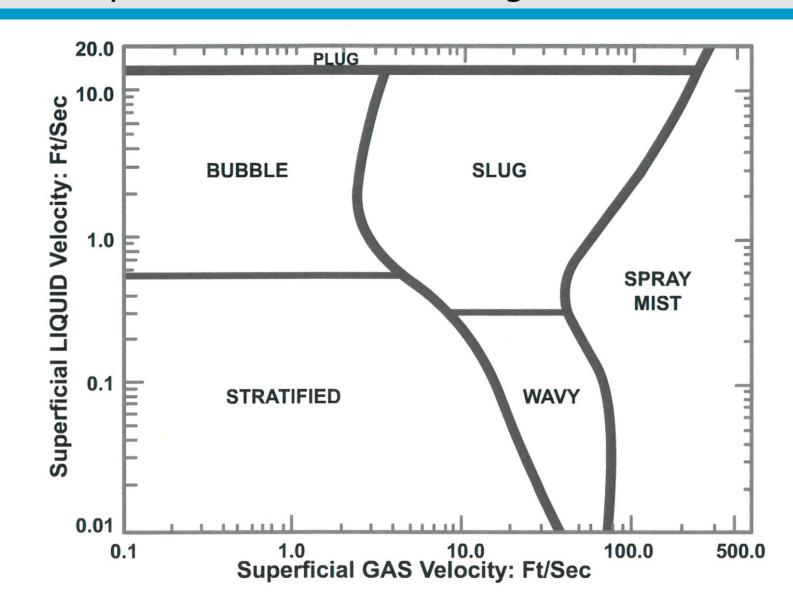

B:
$$Q_{MMCFD} = \left[\frac{0.028 E (P_1^2 - P_2^2)^{0.51} d^{2.53}}{(SG_G^{0.961} z T_{\circ}_R L_{mi})^{0.51}} \right]$$

- For IDs between 6 inch and 24 inch
- $Re > 15*10^6$

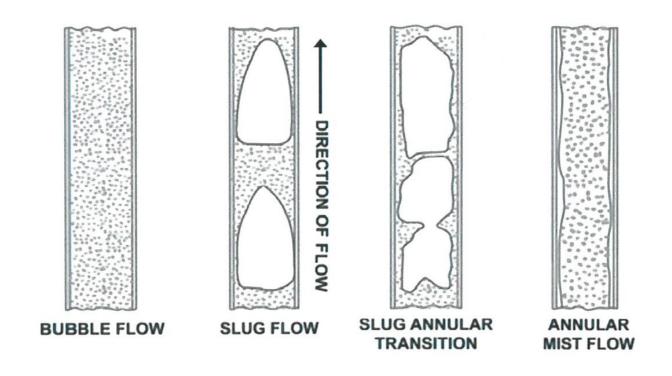
 ΔP in psi, Q in MMCFD, L_{mi} in miles, d = ID in inches

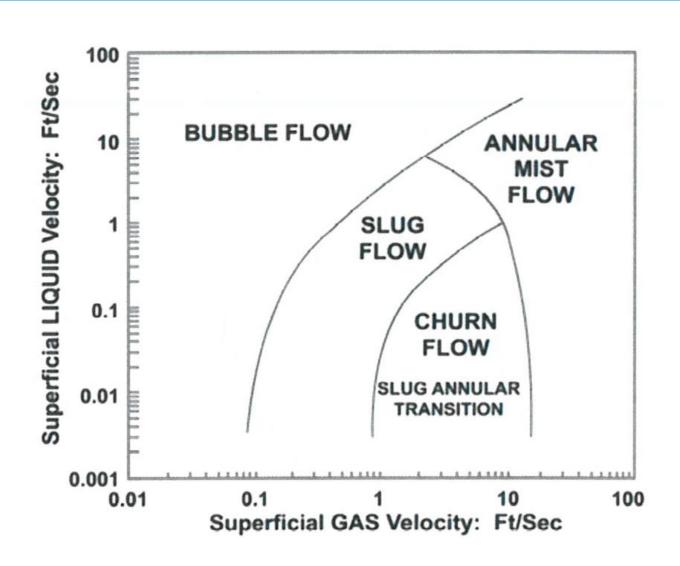

E factor : E = 1.00 for new pipe

- = 0.95 for good condition
- = 0.92 for average condition
- = 0.85 for old pipe
- = 0.75 for corroded pipe



Pressure drop in pipe: Two phase flow


- With liquid and gas both flowing
 - Two phase flow
 - Three phase flow
- Horizontal flow patterns
 - Noise produced with bubbles
 - Using superficial velocities for gas and liquid


Two-phase horizontal flow regime

Vertical two-phase flow regimes

Two-phase vertical flow regimes

Pressure drop for two-phase flow

- Very complex: errors ≈ 20% common
 - Use simulation software and experience
- API RP 14 E gives following simplified method
 - Assumes: $\Delta P < 10\%$, bubble / mist flow, f=0.015

$$\Delta P = \frac{5 \times 10^{-8} L W^2}{d^5 \rho_{mix}}$$

where, W= 3180
$$Q_{MMCFD}SG_G + 14.6 Q_{BPD}SG_L$$

$$and \; \rho_{mix} = \frac{12409 \; SG_LP + 2.7 \; R_{scf/bbl}SG_GP}{198.7 \; P + R_{scf/bbl} \; T \; z} \label{eq:rhomix}$$

Two phase flow: High GOR $> 10,000 \text{ ft}^3/\text{bbl}$

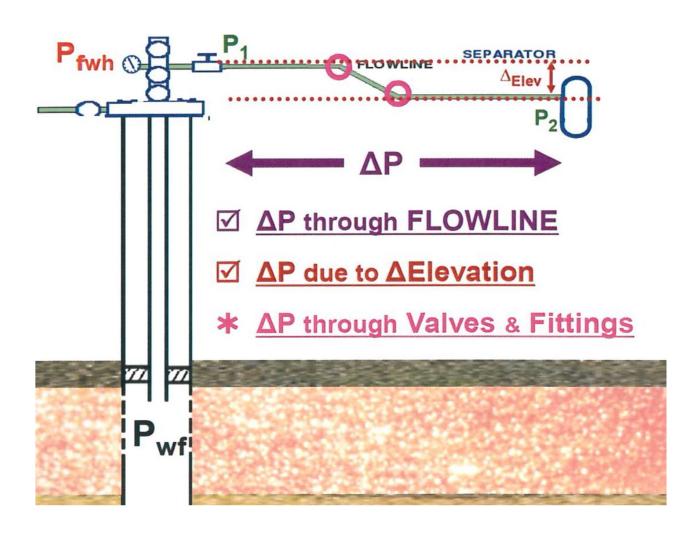
• Use gas equations but change SG_G to :

$$SG_{mix} = \frac{SG_G + \frac{4591\,SG_L}{R_{scf/bbl}}}{1 + \frac{1123}{R_{scf/bbl}}}$$

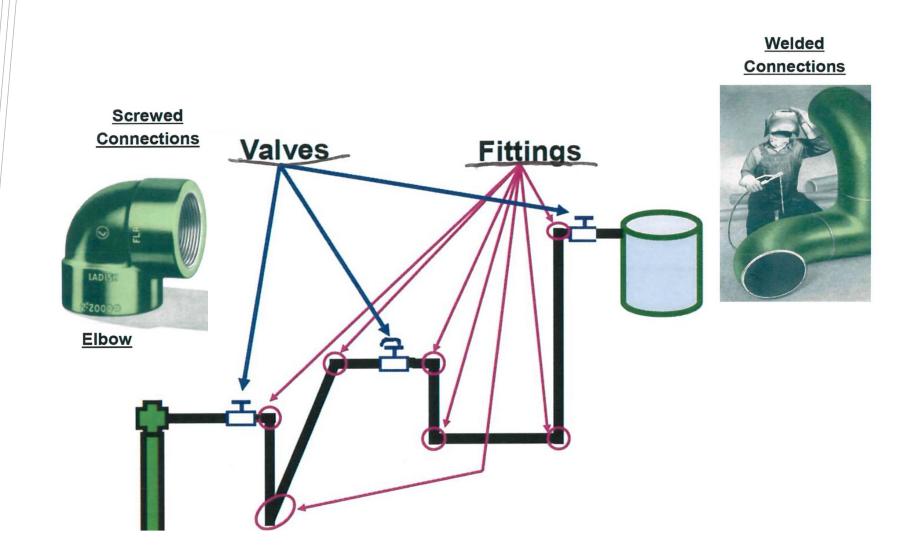
If GOR < 10,000 scf/bbl, use two-phase correlations

AGA: Recommended multiphase △P calculations

HAND CALCULATION METHODS


- Frictional ΔP: Dukler, A.E., Moye Wicks, III, and R.G. Cleveland. "Frictional Pressure Drop in Two-Phase Flow: B. An Approach through Similarity Analysis" AIChE Journal, Vol 10, No. 1, January 1964, pp. 44-51.
- Elevation ΔP : Flanigan, Orin. "Effect of Uphill Flow on Pressure Drop in Design of Two-Phase Gathering Systems" Oil and Gas Journal, March 10, 1958, pp. 132-141.
- Liquid Hold-up: Eaton, Ben A., et al. "The Prediction of Flow Patterns, Liquid Holdup and Pressure Losses Occurring During Continues Two-Phase Flow in Horizontal Pipelines" J. Pet. Tech. AIME, JUNE 1967, pp.815-828.

For examples using these Methods : see AGA ENGINEERING DATA BOOK
Gas Processors Association. 1998
gpsa@gasprocessors.com


COMPUTER CALCULATION METHODS

- Beggs, H. Dale, and James P. Brill. "A Study of Two-Phase Flow in Inclined Pipes" Trans. AIME, May 1973, pp. 606 – 617.
- Orkiszewski, J. "Predicting Two-Phase Pressure Drops in Vertical Pipe" Pet. Tech, AIME, 6/67 pp 829 – 838.
- Baker, O., et al. "Gas-Liquid Flow in Pipelines, II. Design Manual" AGA API Project NX-28, 10/70
- Brill & Mukherjee "Multiphase Flow in Wells" Monograph Vol 17 SPE Henry L Doherty Series
 Ansari and Olga-S Transient Multiphase Simulator: OLGA

Pressure drop through valves and fittings

Pressure drop through valves and fittings

Pressure drop through valves and fittings

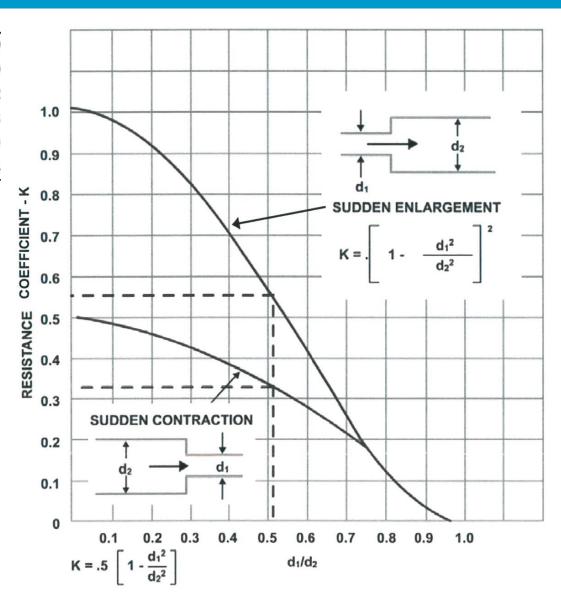
- Resistance coefficients: K_r
- Flow coefficients: liquid C_v, Gas C_g
- Equivalent length: LE

Darcy's Law for valves and fittings

Resistance coefficient: K_r

$$\Delta H = K_r \frac{v^2}{2 g}$$
, where $K_r = \frac{f L}{D}$

• Liquid


$$\Delta P_{psi} = 0.958 \times 10^{-6} \frac{K_r Q_{BPD}^2 SG_L}{d^4}$$

• Gas

$$P_1^2 - P_2^2 = 2.09 \frac{K_r Q_{MMCFD}^2 SG_G z \, T_{^0R}}{d^4}$$

Resistance coefficients

Global Valve, wide open	10.0
Angle Valve, wide open	5.0
Gate Valve, wide open	0.2
Tee	1.8
90° Elbow	0.9
45° Elbow	0.4

Darcy's law for valves and fittings

Flow coefficient: C_v and C_g

Larger
$$C_v$$
 (liquids) or C_g (gases) \Longrightarrow Smaller ΔP

Liquid

$$\Delta P_{psi} = 8.5 \times 10^{-4} \frac{Q_{BPD}^2 S G_L}{C_v^2}$$

• Gas

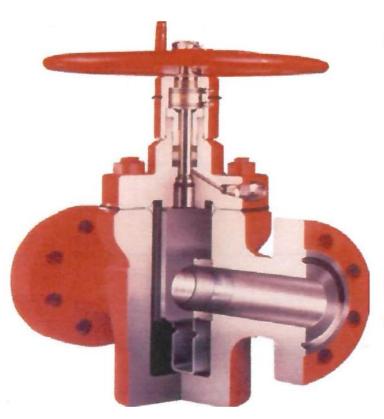
$$P_1^2 - P_2^2 = 1.869 \frac{Q_{MMCFD}^2 SG_G Z T_{^0R}}{C_q^2}$$

Relationship between K_r and C_v

$$C_v = 29.9 \frac{d^2}{\sqrt{K_r}}$$

$$K_r = 894 \; \frac{d^4}{C_v^2}$$

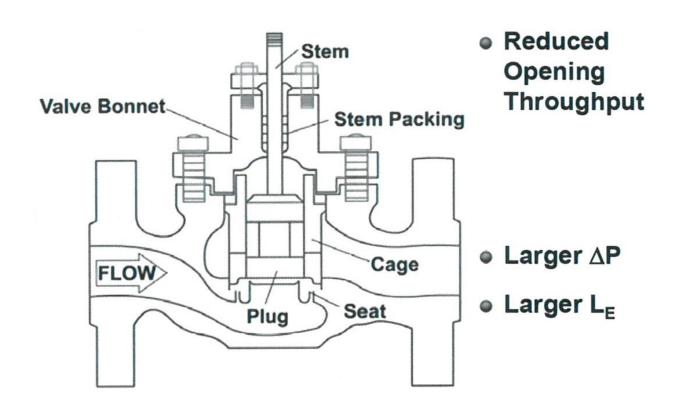
Equivalent lengths


$$L_E = \frac{K_r d}{12 f_m}$$

$$L_E = 74.5 \ \frac{d^5}{f_m C_v^2}$$

L_E: Equivalent Length of Valves and Fittings, in Feet

45* Short Long Hard Soft 90* miter bends Enlargement Contract															-	_												
ċ	eo k	Angle valve	Swing oheok valve			45 el			Short Lon rad.ell rad.			Han T		Soft T		90° miter bends				Er	argeme	ent		Contraction				
Nominal Pipe sizein.	all of			Plug cook	Gate or ball valve						ded		pag		pap	er	er	er	s	udden		Std. r	ed.	Sudden Std.			Std. re	id.
	valve or ball check valve					p	pap	pa	pep	p		2		pa					Equiv. Linterms of small d									
ninal	P. P.	wing	Ę	o o o	Welded	Threaded	Welded	Threaded	Welded	Threaded	Welded	Threaded	Welded	Threaded	2 miter	3 miter	4 miter	1/4	172	= 3/4	172	= 3/4	1/4	= 1/2	3/4	1/2	3/4	
2	Globe		6				-		-		-		-		-				= Q/P	= Q/p	= Q/P	=Q/P	= Q/p	= Q/p	= Q/p	d/D = 3/4	d/D = 1/2	= Q/P
1 1/2	55	26	13	7	1	1	2	3	5	2	3	8	9	2	3				5	3	1	4	1	3	2	1	1	
2	70	33	17	14	2	2	3	4	5			10	11	3	4				7	4	1	5	1	3	3	1	1	.
2 1/2	80	40	20	11	2	2		5				12		3					8	5	2	6	2	4	3	2	2	.
						l '		'		'		۱ ' ا		١ ' ا														
3	100	50	25	17	2	2	2	6		4		14		4					10	6	2	8	2	5	4	2	2	.
4	130	65	32	30	3	3	3	7		5		19		5					12	8	3	10	3	6	5	3	3	
6	200	100	48	70	4	4	1	11		8		28		8					18	12	4	14	4	9	7	4	4	1
8	260	125	64	120	6	6	6	1	15		9		37		9				25	16	5	19	5	12	9	5	5	2
10	330	160	80	170	7	7	7	1	8	12		47	,	12					31	20	7	24	7	15	12	6	6	2
12	400	190	95	170	9	8	9	2	2	14		55		14		28	21	20	37	24	8	28	8	18	14	7	7	2
14	450	210	105	80	10		0		6	16		1000	62		6	32	24	22	42	25	9			20	16	8		.
16	500	240	120	145	11		1		29 18			72		18		38	27	24	47	30	10			24	18	9		
18	550	290	140	160	12	1	2	33		20		82		20		42	30	28	53	35	11			26	20	10		.
20	650	300	155	210	14	1	4	35		23		90		23		46	33	32	60	38	13			30	23	11		
22	688	335	170	225	15		5		0	25		100		25		52	36	34	65	42	14			32	25	12		
24	760	370	185	254	16		6	44		27		110		27		56	39	36	70	46	15			35	27	13		.
1																												
30				312	21	2	21		40		intg -		C ⁴⁰		170	51	44											
36					25	2	25 Full C				penir			ทุ่ซู้ - ร่ำู๊ทล		84	-E0	52										
42					30	3	0	77		55		200		55		98	69	64										
48		-			35	3	COLUMN TO SERVICE	88		56	55 220		0	65		112	81	72										
54			Rec	uc	ed	Of	ို့မ	ening			- 1a		ae	70		126	90	80										
60			ioc	40	7 45	7	8		103	8	0	arge		so E		190	99	92						Gas P	rocessor	s Suppli	ers Asso	ciation


Gate valve

Full Opening Throughput

- Not Much ∆P
- Small L_E

Globe valve

Thank you