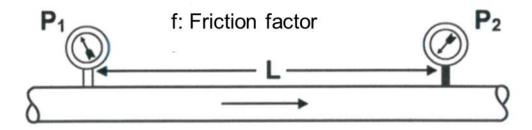

Flow Assurance

Gathering system

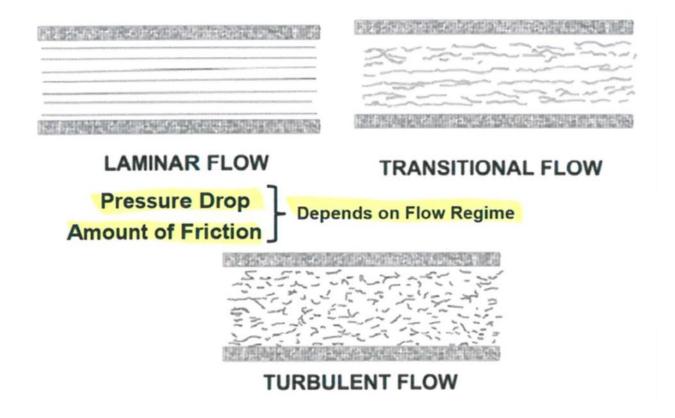
Pressure drop vs. Flowrate in oil field flowlines

d = Internal Diameter in Inches

Darcy – Weisbach Formula


• Pressure drop expressed in feet of fluid head

$$h_{ft} = \frac{f \ L \ v^2}{D \ 2g}$$


• Pressure drop expressed in psi

$$\triangle P = \frac{\rho f L v^2}{144 D 2g}$$

g: correction factor not gravity acceleration $(= 32.2 \text{ ft/s}^2 = 9.81 \text{ m/s}^2)$

Flow regime in pipe

- Gas dominant stream is mostly turbulent
- Flow regime determined by Reynolds number

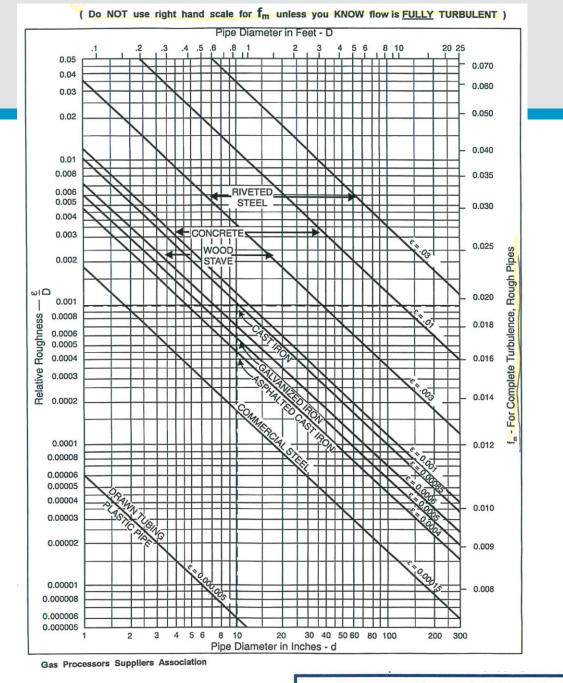
Reynolds number

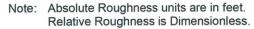
- Dimensionless parameter
 - : Ratio of Inertia forces to Viscous forces

$$R_{e} = \frac{\rho D v}{\mu_{e}}$$

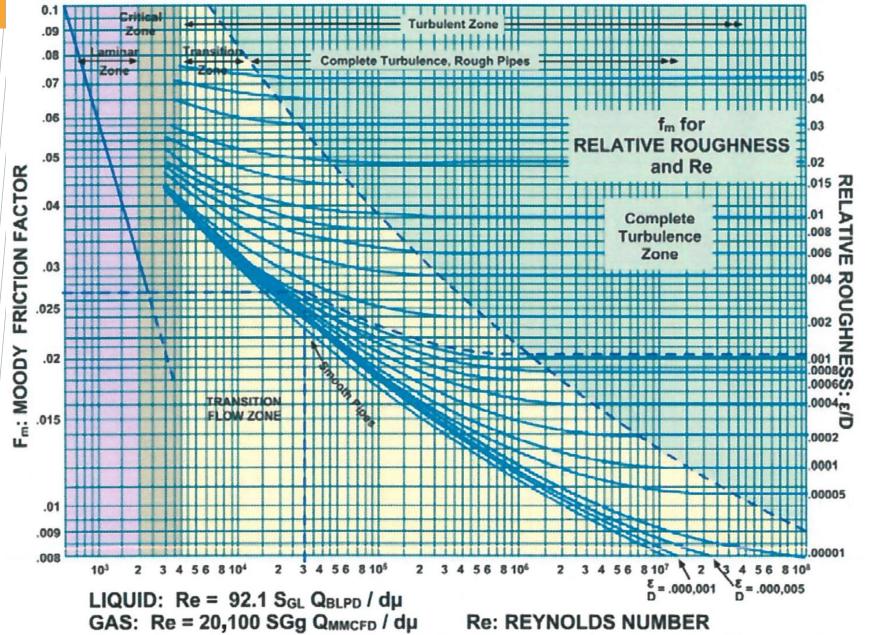
$$\rho: lb/ft^{3} D: ft v: ft/sec \mu_{e}: lb/ft - sec$$

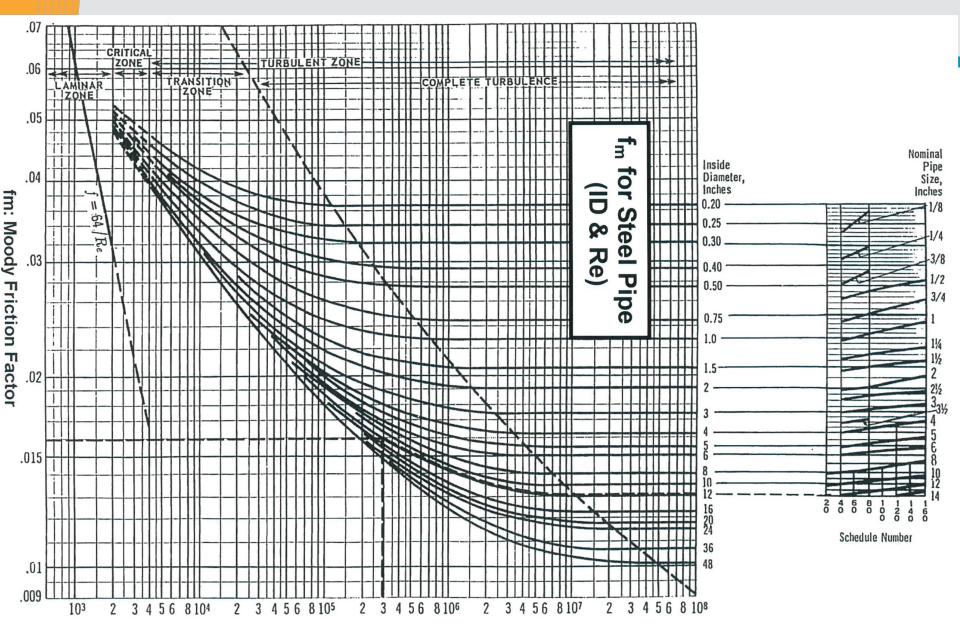
• Re < 2000 = Laminar flow


$$Liquid: Re = 92.1 \frac{SG_L Q_{BPD}}{d \mu}$$


$$Gas: Re = 20100 \frac{SG_G Q_{MMCFD}}{d \mu}$$

d: inches, µ: centipoise


Friction factor


- f = Dimensionless factor of proportionality
 - f_m = Moddy friction factor
 - $f_f = Fanning fraction factor (f_f = 1/4 f_m)$
- Laminar flow: $f_m = 64 / Re$
- For transitional and turbulent flow
 - f_m a function of Re
 - Relative roughness: ϵ / D
- For complete turbulence
 - f_m a function of ϵ / D only

ε for Steel Pipe = 0. 00015 feet

Re: Reynolds Number

Pressure drop: Laminar flow (Re < 2000)

• Liquid

$$\Delta P_{psi} = 0.00068 \frac{\mu_{cp} L_{ft} V_{ft/sec}}{d_{in}^2}$$
$$\Delta P_{psi} = 7.95 \times 10^{-6} \frac{\mu_{cp} L_{ft} Q_{BPD}}{d_{in}^4}$$

• Gas

$$\Delta P_{psi} = \frac{0.040 \ \mu_{cp} L_{ft} T_{o_R} Z Q_{MMCFD}}{P_{psi} d_{in}^4}$$

No " f_m " since $f_m = 64/Re$ and $Re = SG_L Q / d \mu$

Pressure drop: Transitional and Turbulent

• Liquid

$$\Delta P_{psi} = 11.5 \times 10^{-6} \frac{f_m L_{ft} Q_{BPD}^2 S G_L}{d_{in}^5}$$

• Gas

$$P_1^2 - P_2^2 = 25.1 \frac{f_m L_{ft} Q_{MMCFD}^2 SG_G ZT_R}{d_{in}^5}$$

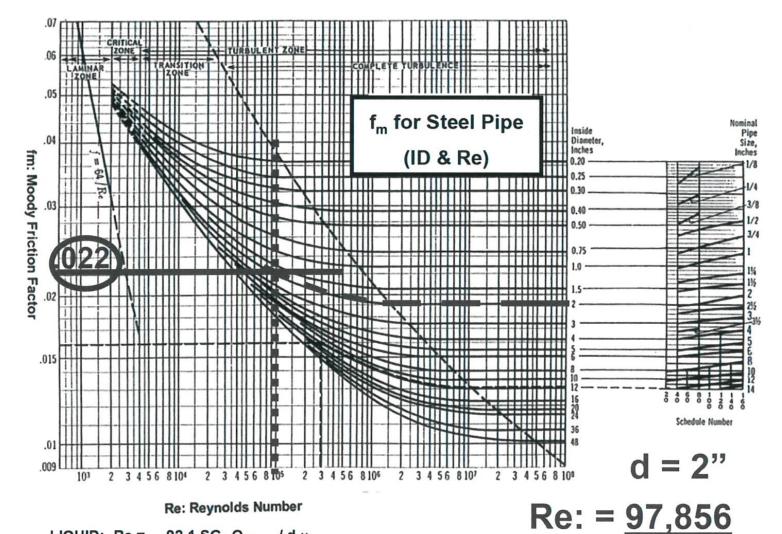
Exercise $\triangle P$: Liquid flow in Pipe

- What is the friction pressure drop in 10,000 ft of 2 inch ID pipe flowing 50 BPD of 35 °API crude oil (μ=1.2 cp and SG_L=0.85) ?
 - 1. First calculate Reynold's number to determine flow regime

2. Use the equation for

$$\Delta P_{psi} =$$

Exercise: Increasing flow rate 3000 BPD


1. First calculate Reynold's number to determine flow regime

2. Use the equation for

3. Determine f_m using chart

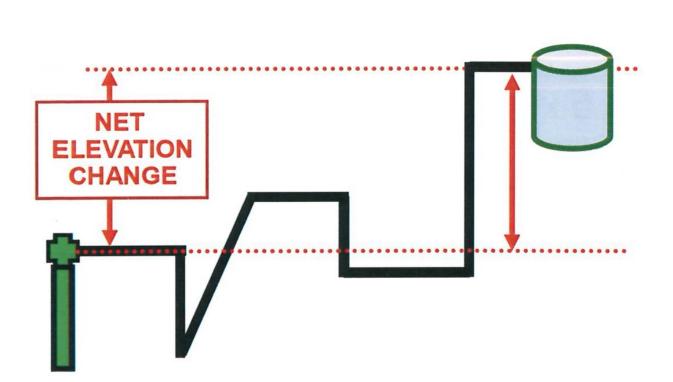
$$\Delta P_{psi} =$$

:

LIQUID: Re = 92.1 SG_L Q_{BLPD} / d μ GAS: Re = 20,100 SG_g Q_{MMCFD} / d μ

Pipeline sizing Summary

Consider Fluid Velocity


- Noise / Corrosion / Erosion
- Liquid / Solids Build-Up
- Contain Internal Pressure P=2StFET/d
- Pressure Drop: Horizontal Pipeline

 $\sqrt[Non-Lanimat]{ Liquid: \Delta P_{psi} = 11.5 \times 10^{-6} f_{m} L Q^{2}_{BLPD} SG_{L} / d^{5} \\ Gas: (P_{1})^{2} - (P_{2})^{2} = 25.1 f_{m} L Q^{2}_{MMSCFD} SG_{g} ZT / d^{5}$

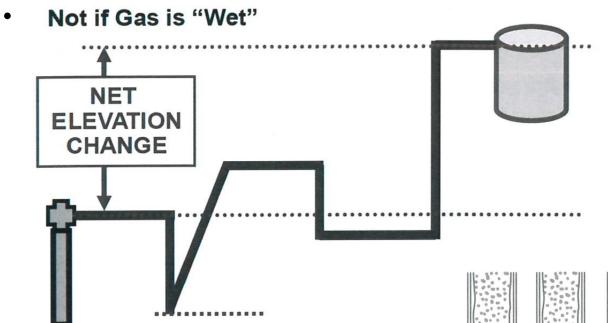
Pipeline installation

What if pipeline is not horizontal?

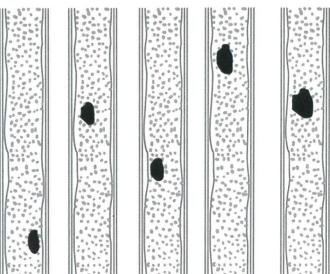
Pressure drop due to Elevation

• Liquid: ΔP due to Elevation

$$\Delta P_{E(psi)} = \frac{\rho_{L(lb/ft^{2})H_{E(ft)}}}{144} = 62.4 \frac{SG_{L}H_{E(ft)}}{144}$$

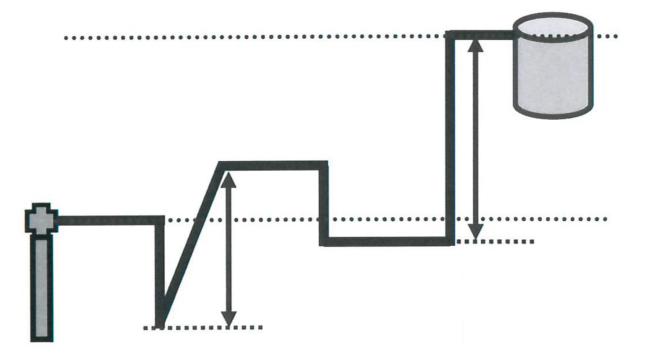

$$\Delta P_{E(psi)} = 0.433 \, SG_L H_{E(ft)}$$

• Gas:
$$\Delta P$$
 due to Elevation


$$\Delta P_{E(psi)} = \frac{\rho_{G(lb/ft^2)H_{E(ft)}}}{144} = 2.70 \frac{SG_GP_{psi}/T_{^0R}ZH_{E(ft)}}{144}$$

$$\Delta P_{E(psi)} = 0.188 \frac{SG_GP_{psi}}{T_{^0R}ZH_{E(ft)}}$$

Not always true for gas flow



• Big liquid droplets for annular flow

Pressure drop for Wet gas

• Sum the "Ups"

Estimating ΔP without using Friction Factor

- Empirical equations
 - Useful for quick calculation before use of PCs
 - Commonly accepted empirical equations
 - : Hazen-Williams empirical equation (Liquid flow)

$$\Delta P = 0.7 \times 10^{-6} \frac{Q^{1.85} L SG_L}{d^{4.87}}$$

 $(\Delta P \text{ in } psi, Q \text{ in } BLPD, L \text{ in } feet, d = ID \text{ in inches})$

: Weymouth formula (gas flow)

$$P_2^2 = P_1^2 - \left[\frac{0.8 \, L_{ft} T_R Z \, SG_G Q_{MMCFD}^2}{d_{in}^{5.334}}\right]$$

- most common for oil field use

- good for IDs between 0.75 inch & 16 inch
- at Laminar rates, calculated ΔP is too low

: Panhandle empirical equation (gas flow)

Panhandle: A & B Empirical equation

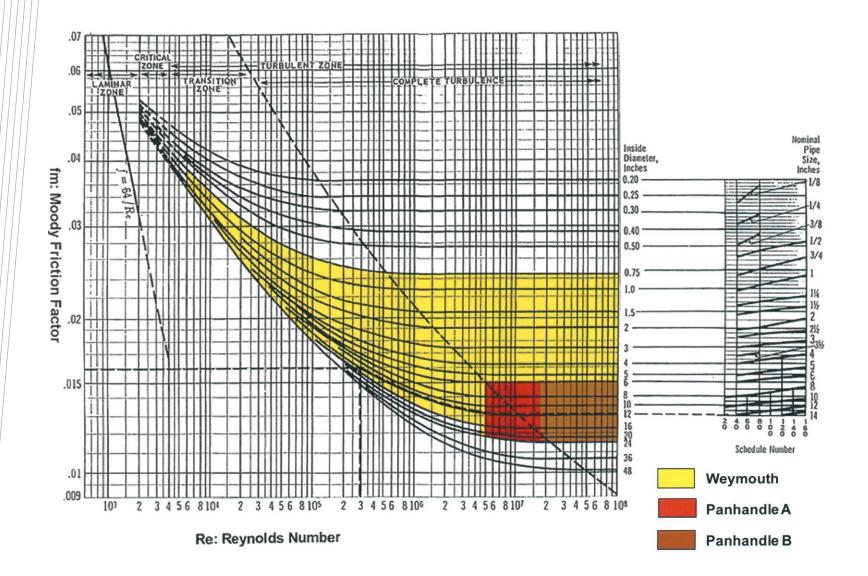
• For estimating ΔP without friction factor

A:
$$Q_{MMCFD} = \left[\frac{0.020 E \left(P_1^2 - P_2^2\right)^{0.51} d^{2.62}}{\left(SG_G^{0.853} z T_{^oR} L_{mi}\right)^{0.539}} \right]$$

- For IDs between 6 inch and 24 inch

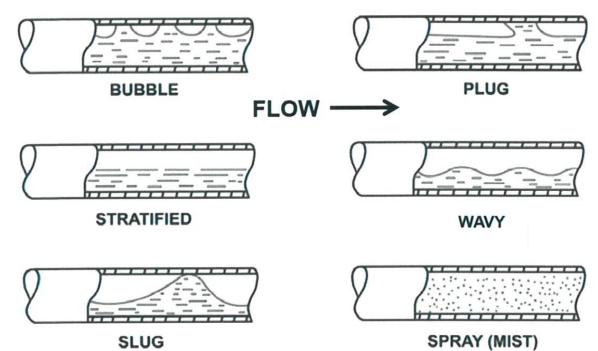
- Re between 5*10⁶ and 15*10⁶

B:
$$Q_{MMCFD} = \left[\frac{0.028 E \left(P_1^2 - P_2^2\right)^{0.51} d^{2.53}}{\left(SG_G^{0.961} z T^o_R L_{mi}\right)^{0.51}}\right]$$

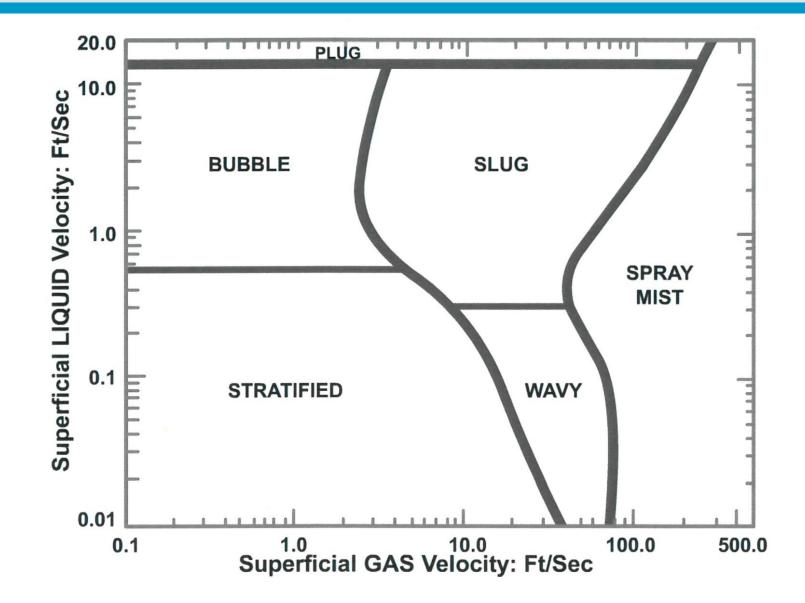

- For IDs between 6 inch and 24 inch

- Re > 15*10⁶

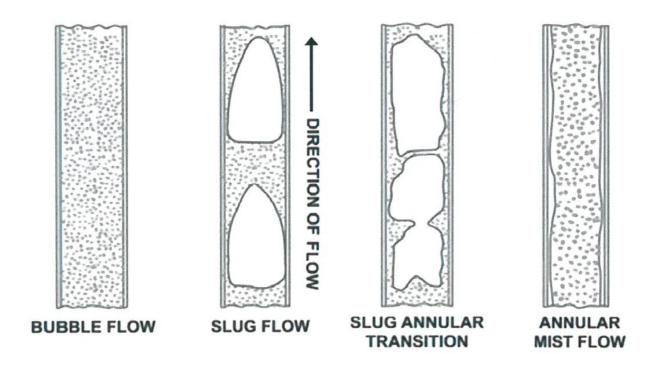
 ΔP in psi, Q in MMCFD, L_{mi} in miles, d = ID in inches

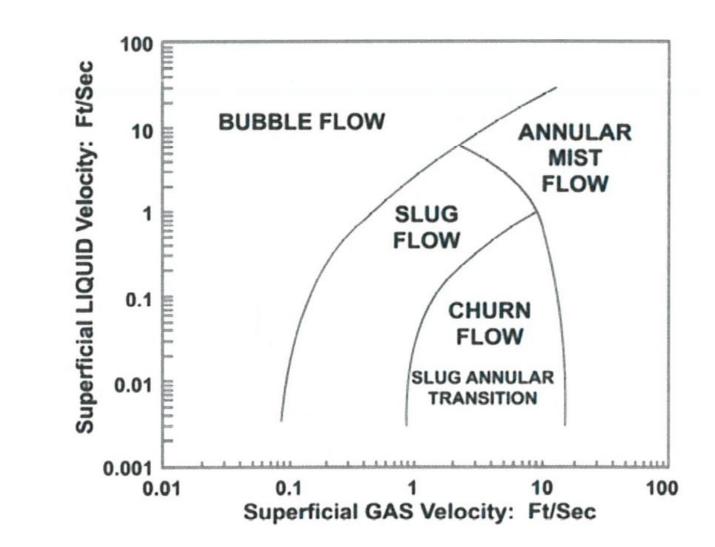

E factor : E = 1.00 for new pipe

- = 0.95 for good condition
- = 0.92 for average condition
- = 0.85 for old pipe
- = 0.75 for corroded pipe



Pressure drop in pipe: Two phase flow


- With liquid and gas both flowing
 - Two phase flow
 - Three phase flow
- Horizontal flow patterns
 - Noise produced with bubbles
 - Using superficial velocities for gas and liquid


Two-phase horizontal flow regime

Vertical two-phase flow regimes

Two-phase vertical flow regimes

Pressure drop for two-phase flow

- Very complex: errors ≈ 20% common
 - Use simulation software and experience
- API RP 14 E gives following simplified method
 - Assumes: $\Delta P < 10\%$, bubble / mist flow, f=0.015

$$\Delta P = \frac{5 \times 10^{-8} \, L \, W^2}{d^5 \, \rho_{mix}}$$

where, W= 3180
$$Q_{MMCFD}SG_G$$
 + 14.6 $Q_{BPD}SG_L$

and
$$\rho_{mix} = \frac{12409 \, SG_L P + 2.7 \, R_{scf/bbl} SG_G P}{198.7 \, P + R_{scf/bbl} \, T \, z}$$

Two phase flow: High GOR > 10,000 ft³/bbl

• Use gas equations but change SG_G to :

$$SG_{mix} = \frac{SG_G + \frac{4591 SG_L}{R_{scf/bbl}}}{1 + \frac{1123}{R_{scf/bbl}}}$$

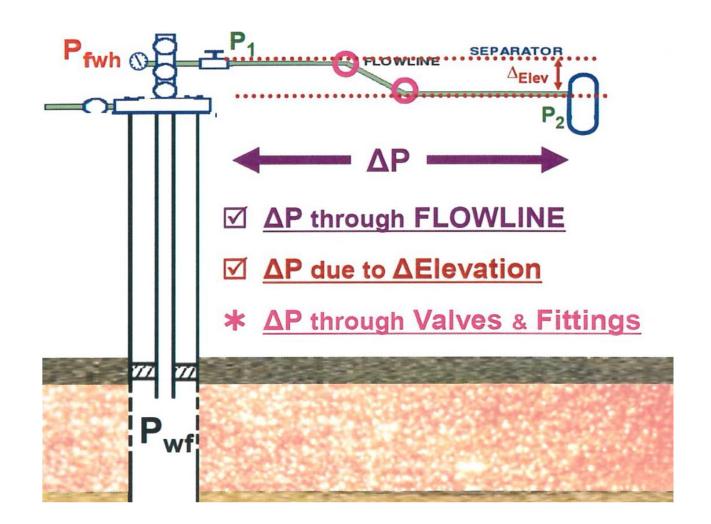
If GOR < 10,000 scf/bbl, use two-phase correlations

AGA: Recommended multiphase ΔP calculations

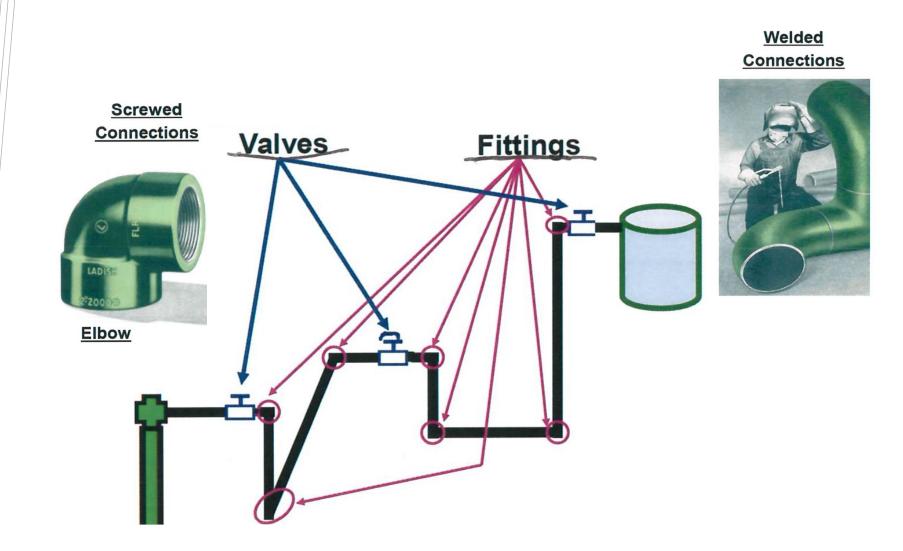
HAND CALCULATION METHODS

- Frictional △P: Dukler, A.E., Moye Wicks, III, and R.G. Cleveland. "Frictional Pressure Drop in Two-Phase Flow: B. An Approach through Similarity Analysis" AIChE Journal, Vol 10, No. 1, January 1964, pp. 44-51.
- Elevation △P: Flanigan, Orin. "Effect of Uphill Flow on Pressure Drop in Design of Two-Phase Gathering Systems" Oil and Gas Journal, March 10, 1958, pp. 132-141.
- Liquid Hold-up: Eaton, Ben A., et al. "The Prediction of Flow Patterns, Liquid Holdup and Pressure Losses Occurring During Continues Two-Phase Flow in Horizontal Pipelines" J. Pet. Tech. AIME, JUNE 1967, pp.815-828.

For examples using these Methods : see AGA ENGINEERING DATA BOOK


Gas Processors Association. 1998

gpsa@gasprocessors.com


COMPUTER CALCULATION METHODS

- Beggs, H. Dale, and James P. Brill. "A Study of Two-Phase Flow in Inclined Pipes" Trans. AIME, May 1973, pp. 606 – 617.
- Orkiszewski, J. "Predicting Two-Phase Pressure Drops in Vertical Pipe" Pet. Tech, AIME, 6/67 pp 829 – 838.
- Baker, O., et al. "Gas-Liquid Flow in Pipelines, II. Design Manual" AGA API Project NX-28, 10/70
- Brill & Mukherjee "Multiphase Flow in Wells" Monograph Vol 17 SPE Henry L Doherty Series
 Ansari and Olga-S Transient Multiphase Simulator: OLGA

Pressure drop through valves and fittings

Pressure drop through valves and fittings

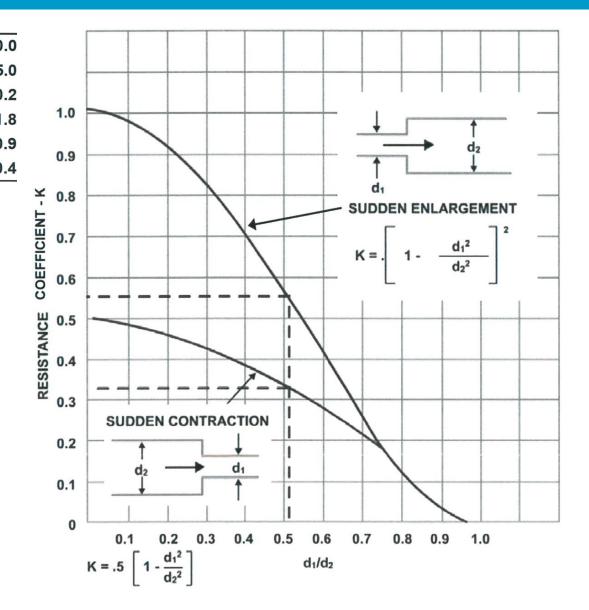
Pressure drop through valves and fittings

- Resistance coefficients: K_r
- Flow coefficients: liquid $-C_v$, Gas $-C_g$
- Equivalent length: L_E

Darcy's Law for valves and fittings

• Resistance coefficient: K_r

$$\Delta H = K_r \frac{v^2}{2 g}, where K_r = \frac{f L}{D}$$
Larger K_r \low Larger \Delta P


• Liquid

$$\Delta P_{psi} = 0.958 \times 10^{-6} \frac{K_r Q_{BPD}^2 S G_L}{d^4}$$

$$P_1^2 - P_2^2 = 2.09 \frac{K_r Q_{MMCFD}^2 SG_G z \, T_{^0R}}{d^4}$$

Resistance coefficients

Global Valve, wide open	10
Angle Valve, wide open	5
Gate Valve, wide open	0
Тее	1.
90° Elbow	0.
45° Elbow	0.

Darcy's law for valves and fittings

- Flow coefficient: C_v and C_g
 - : a relative measure of its efficiency at allowing fluid flow

Larger C_v (liquids) or C_g (gases) \implies Smaller $\triangle P$

• Liquid

$$\Delta P_{psi} = 8.5 \times 10^{-4} \frac{Q_{BPD}^2 SG_L}{C_v^2}$$

Gas

$$P_1^2 - P_2^2 = 1.869 \frac{Q_{MMCFD}^2 SG_G z \, T_{^oR}}{C_g^2}$$

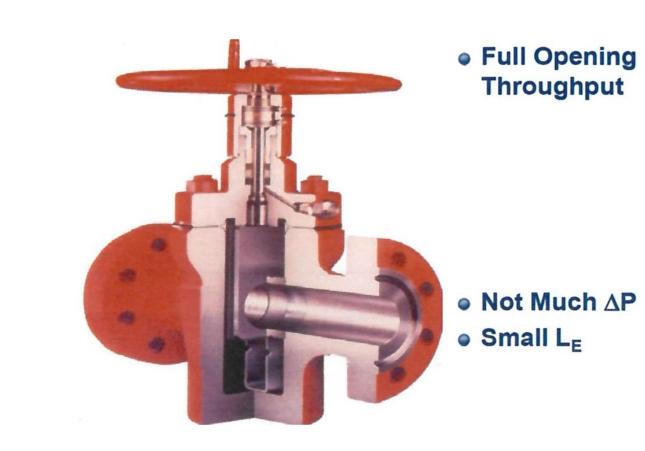
Relationship between K_r and C_v

$$C_v = 29.9 \frac{d^2}{\sqrt{K_r}}$$

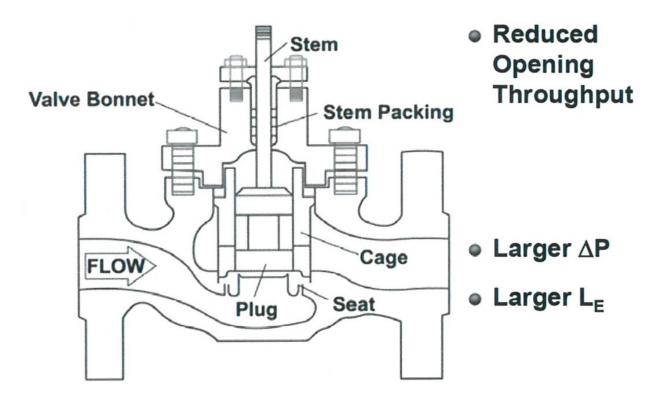
$$K_r = 894 \ \frac{d^4}{C_v^2}$$

Equivalent lengths

• The pressure drop in a system component such as valve and fittings can be converted to the "equivalent length" of a pipe or tube that would give the same pressure loss.


$$L_E = \frac{K_r \ d}{12 \ f_m}$$

$$L_E = 74.5 \ \frac{d^5}{f_m C_v^2}$$


L_E: Equivalent Length of Valves and Fittings, in Feet

ſ	ć	check	lve	k valve	ok		45° eli		Short rad.ell		Long rad.ell		Hard T		Soft T		90*	miter ber	nds		Er	largem	ent		Contraction													
	size in.	oall ch				valve														s	udden		Std. n	ed.	s	udden		Std.red.										
	Pipe	valve or ball o	Angle valv	chec	oo Br	Plug cock e er ball ve eaded eaded		ded	Pa	pap	Pa	pad pab	P	ded	5	b	5	Equiv. Linterms of small d																				
Nominal	Nominal Pipe	Globe valv	Ang	Sving check val	Pl	Gate o	Gate o	Gate o	Gate o	Gate o	Gateo	Gate o	Gate o	Gate o	Gate or ball valve	Welded	Threaded	Welded	Threaded	Welded	Threaded	Welded	Threade	Welded	Threaded	2 miter	3 miter	4 miter	d/D = 1/4	d/D = 1/2	d/D = 3/4	d/D = 1/2	d/D = 3/4	d/D = 1/4	d/D = 1/2	d/D = 3/4	d/D = 1/2	d/D = 3/4
	1%	55	26	13	7	1	1	2	3	5	2	3	8	9	2	3				5	3	1	4	1	3	2	1	1										
	2	70	33	17	14	2	2	3	4	5	3	4	10	11	3	4				7	4	1	5	1	3	3	1	1										
	2 %	80	40	20	11	2	2		5	5.3.		12	•	3					8	5	2	6	2	4	3	2	2											
	3	100	50	25	17	2	2	2	6		4 14		4 4					10	6	2	8	2	5	4	2	2	•											
	4	130	65	32	30	3	3	3	7	7		5		19		5				12	8	3	10	3	6	5	3	3	•									
	6	200	100	48	70	4	4	1	11		8		28		8					18	12	4	14	4	9	7	4	4	1									
	8	260	125	64	120	6	e	6	1	5	9		37	7	\$	9				25	16	5	19	5	12	9	5	5	2									
	10	330	160	80	170	7	7	7	1	8	12		47	7	12					31	20	7	24	7	15	12	6	6	2									
	12	400	190	95	170	9	8	9	2	2	14		55	5	1	4	28	21	20	37	24	8	28	8	18	14	7	7	2									
						1.12																																
	14	450	210	105	80	10	1	0	2	6	16		62	2	1	6	32	24	22	42	25	9	·	•	20	16	8	•	•									
	16	500	240	120	145	11	1			9	18			72		18		27	24	47	30	10	·	•	24	18	9	•	•									
	18	650	290	140	160	12	1	2	3	3	20		82		2	0	42	30	28	53	35	11	•	•	26	20	10	•	•									
	_							.																														
	20	650	300	155	210	14	1			5	23		90		23		46	33	32	60	38	13	·	·	30	23	11	•	•									
	22	688	335	170	225 254	15	1			0	25 27		100		25		52 56	36 39	34 36	65 70	42 46	14 15			32 35	25 27	12 13	•										
	24	750	370	185	204	10		0	-	44 2		27 110			21		~~		~		40	15	·				13											
	30				312	21	2	1		55 40			140 40			0	.70 .	51	44																			
	36					25	2	H	u	စ်ရစ် ရှိ		ęn	in <mark>iĝ</mark> -		Sma			-60	52																			
	42					30	3		7	7	55		20	0	5		98	69	64																			
	48					35	з	5	8	8	55		220	0	6	5	112	81	72																			
	64	•		Rec	luc	49		å	ening		71	0	25	0	ľ	Sec. Sec.	126	90	80																			
L	60			ver	uc	FYS	V	^y e	11	19	- 90		ar	ge	-	σE	190	99	92						Gas P	rocessor	s Suppli	ers Asso	ciation									

Gate valve

Globe valve

Thank you