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INTRODUCTION

In previous chapters, the analytic
tools necessary to approach the problem of
aeroelastic analysis have been presented,
In the terminology of Bisplinghoff and
Ashley (1962), three operators, Inertial,
Structural, and Aerodynamic, are needed in
the appropriate form. The current state
of the art techniques for determining the
aerodynamic operators, which are contri-
buted by the unsteady aerodynamicist, have
been presented in Chapters 2 through 7.
The 1inertial and structural operators,
which together form the structural dynamic
model have been reviewed in chapters 12
through 14,

The task of the
is to combine the

aeroelastic analysis

formulations of the
structural dynamic and unsteady aerody-
namic model in a consistent manner, to
solve the resulting aeroelastic model for
the desired results {e.g., stability,
forced vibration), and to interpret those
results for both qualitative trends, and
quantitative detail. This task of formu-
lation of the aerocelastic problem and
interpretation of the results will be the
subject of this chapter.

Specifically, the topics to be ad-
dressed are: the formulation of the aero=-
elastic problem, including a summary of
the relations necessary to transform vari-
ous diverse structural and aerodynamic
models to a consistent notation; a brief
review of the solution techniques
applicable; the trends in aeroelastic
stability for tuned rotors; and the
effecta of mistuning on stability.

In order to understand the motivation
for a lengthy discussion of aeroelastic
formulations, one must appreciate the
challenges and dilemmas faced by the work-
ing aeroelastician. First, the starting
point of the analysis can vary. Typical
starting points can include experimentally
or analytically determined mode shapes of
the entire blade-disk assembly, mode
shapes of individual blades, or the pro-
perties of a simple typical section.
Secondly, the objective or end point of
the analysis may vary. Most often in
current practice, a simple assessment of
the stability of the turbomachinery stage
is desired. Increasingly, however, the
full forced vibration response to aerody-
namic disturbances 1is of interest, In
principle, the ultimate objective is to
develop a completely coupled, time accu-
rate dynamfic and aerodynamic wmodel which
can be used in such diverse analysis as
stall and surge loading, and analysis of
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mechanical disturbances such as FOD
impact, blade loss, rubs, etc. The third
challenge facing the working aeroelas-
tician is that all the required analytic
tools to progress in an orderly and rig-

orous manner from the starting point to
the end point are not available within the
state of the art. For example, a three-
dimensional, heavily loaded, large shock
motion unsteady aerodynamic operator for
the analysis of transonic fan aerocelas-
ticity simply does not exist as of this
writing. Therefore existing tools, exper-
imental data and empirical rules must be
combined to yield an appropriate engineer-
ing solution to the aeroelastic problem,

To illustrate these three problems,
varying start points, various goals, and
unavailability of analysis tools, consider
the very general flow chart for aeroelas-
tic analysis shown in Figure 1. The fig-
ure is largely self-explanatory, especial-
ly in view of the discussion in earlier
chapters, but presents a consistent
strategy for combining and extending those
topics. What is important to note are the
start points, end points, and limitations
that prevent full implementation of the
charted procedure.

Essentially, three starting points are
available, either a structural model of
the blade alone, of the nonrotating blade-
disk assembly or the rotating blade-
diek assembly, In each case, assumed
modes, calculated elgenmodes, or measured
eigenmodes are possible forms of the
starting data, After inclusion of thermal
and shaft/rotor support effects, the first
possible end point is reached, the rotat-
ing natural frequencies, which can be used
in traditional Campbell diagram analysis
of forced vibration. It is reasonable to
say that all of the analytic tools neces-
sary to reach this point on the flowchart
are reasonably well developed, and the
temporal dependence of the motion can be
expressed either in the time or frequency
domain. As soon as the next step in the
chart is taken, the inclusion of the homo-
geneous unsteady aerodynamic forces, two
limitations appear. First, as has been
discussed in Chapters 2 through 7, aerody-

namic operators do not exist for all flow
regimes, and secondly, intrinsic to the
development of these operators is the
assumption of sinusoidal motion of the

blade row. If the ultimate end point is
only the flutter behavior, the assumption
of sinusoidal behavior is not limiting, as
well known techniques exist for assessing
stability even under the assumption of the
sinusoidal wotion.
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STARTING POINTS

INTERMEDJATE STEPS AND RESULTS

.

Typical section
Blade assumed modes |==—msmee=c—wm)
Blade calc. modes

Blade Structural
Dynamic Nodsl

Blade meas. modes

+ disk elastic coupling
+ ghroud coupling
+ mistuning

Assumed twin modes
Blade-disk calc. modes |z===—cmm=)
Blade-disk meas. modes

Non-Rotating Blade -
Disk Dynamics

+ rotational/centrifugal effects

(stiffening, untwist, etc.)

Rotating blade-disk
modes from calculation |mssesm=—|
Or measurement

Rotating Blade -
Disk Dynamics

+ thermal-elastic ef fects

+ shafc¢ elastic support effects

(gyroscopic & centrifugal)

Return to start
for design or
optimization

Pigure 1.

Rotating, Hot Blade -
Disk - Shaft Dynamics

+ unsteady howogeneous
asrodynamic model

Coupled critical
m=====> speeds, natural

frequencies for

Campbell diagram

Homogensous Aercelastic
Blade - Disk - Shaft NModel

xmomc===H Flutter

Response

|

+ unsteady aero disturbance
model (stall, surge. blade
passage. inlet distortion)

+ unsteady nonhomogensous
aerodynamic gust

response function

Complete Rotor
Aeroelastic Model

Aesrodynamic
|=mmme=5 Forced

Response

+ sechanical disturbance
nodel (FOD.BNOD impact,
blade loss, rubs, eto.)

Complete Rotor Aeroelastic-
Nechanical Model

Aorodyvenic/
j=——mmssd Structural
Foroed

|

Response

Plowchart for Aercelastic Analysis



At the next step, however, the addi-
tion of the unsteady aerodynamic distur-
bances and unsteady aerodynamic “gust®
response function, even fewer analytic
toole are available, and the assunmption
of sinusoidal motion becomes 1limiting.
Techniques will be presented below to
transform the aerodynamic influences de-
rived in the frequency domain, back to the
time domain.

Of course, the complete model would
include the capablility to couple the
structural dynamic, aeroelastic and
mechanical disturbance models to produce a
complete, time accurate model of the
turbomachine aeromechanical responsge.
However, due to lack of the proper
analytic tools, this. is probably not poa-
sible at the current time. Ultimately,
iteration takes place over this entire
procedure, either in the form of heuristic
design or formal optimization.

Over the past decade, as the state of
the art of aercelastic analysis has pro-
greased, a number of different formula-
tions of the aeroelastic problems have
evolved. These have included travelling
wave formulation, individual blade tormu-
lations, and standing mode formulations,
Kielb and Kaza (1983}, Crawley and Hall
(1985), Dugundji and Bundas (1984). These
formulations have been applied to single
and two degree of freedom typical section
models, and to blade - modal models,
Srinivasan (1980), Bendiksen and Friedmann
(1981), Srinivasan and Fabunmi (1984), In
some models the effect of disk and shroud
elastic coupling has also been included,
Kielb and Kaza (1984), There has been
some doubt as to whether thease various
formulations are egquivalent, and as to
which is is most appropriate. One of the
objectives of this chapter is to review
and summarize these formulations in a con-
gistent notation for single blade degree
of freedom analysis, and to show that they
are mathematically equivalent. This does
not imply that in a given situation one
may not be preferred over another due to
its ease of application or ingight con-
tributed, but merely that simple siwmi-
larity transforms are available to trans-
form easily from one formulation to
another. The direct extension of the one
degree of freedom formulation to wmultiple
gsection or blade modal degrees of freedom
is also demonstrated.

In the next section the mathematical
formulations and transformations which
allow coupling of the various existing
analytic tools along the 1lines of the
flowchart of Fig. 1 will be presented.

FORMULATION AND SOLUTION OF THE
AEROELASTIC PROBLEM

Basic Relationships

At the foundation of the aeroelastic
analysis of turbomachines and propellers
are three fundamental relationshipsa: a
structural dynamic model of the bladed
disk; a kinematic relationship between
various expressions for blade motion; and
an unsteady aerodﬁnamic model of aerody-~
namic forces. The most general possible
model of the single degree of freedom
aeroelastic response of a typical blade
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section of the ith blade is g¢given as
m 8, + moja = 17+ 0 1)

where mj is the generalized mass, w; its
natural frequency, gqi its displacement,

€7 the motloB dependent aerodynamic
fdrces, and fl the aerodynamic disturbance

forces acting on the ith blade. When
modelling a typical section, the general-
iged mass and force traditionally have
units of mass per span and force per span.
The asgembly of N structurally
uncoupled blades would then be governed
by

M)« Moo = e+ ) @

where eguation (2) represents N
'independent' equations, which will be
recoupled by the motion dependent aerody-
fT « In {its most general
form, the motion dependent force can be
written as

namic forces

R EACHCRTI AR

* (901941 941 Yg0) * (3)
ALY C FROEL FRSEL PRRRL U0 g
+ ete.
with v - I: ii(f)ho(t-T)dr

t .
Yy = ! g Q1 (T (t-T)dr

’1-1 = @tc...

vwhere, of course, fo , f,) . f.) depend on
the Mach No., reduced fregquency, and geom-
etry of the blade and cascade. Equation
(3) expresses in a very general way the
dependence of the force acting on the ith
blade due to its motion and the motion of
its neighbors, and on the time history of
those motions through lags due to shed
vorticity and finite speed of sound.
These lag effects are explicitly repre-
sented by the augwented state variables

Yi.

Unfortunately, within the state of the
art, the asrodynamic operators are not
available in the very general form of eq.
(3)., 1In fact, they are derived for a very
specific temporal and spatial motion
pattern: sinusoidal in time and fixed
interblade phase along the cascade in
space. The kinematic relationship between
these travelling wave coordinates and the
displacement of the ith plade is

J(otﬂnn)] 4

q = ’c[ P abno
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amplitude of the
interblade phase 8
The sum in n can be taken as

where qg, is the
travelling wave of
an - 2"“/“.

n=0,1, 2,%¢¢, N-} ’
or, squivalently for N an odd mmber of blades,

n-—ﬂ‘ill."n-l.o.l.---. -1 : (4a)
or. for N an even mmber of blades,

nw ~ ;— 1."'.'1.0.1-"‘.;

since for a rotor of N blades there are N
possible interblade phase angles, and
small negative angles are equivalent to
large positive ones

Pn ™ Ppn = !!‘:El.g - 3%5 (m)

It will be convenient to rewrite equation

(4) as
(o) = CeX5, } &% ®)
Eo.o ©* o Eg ey Jg%kﬁ
where (EIs] & . E ~° (8)

El—l.o' ° - El.!-l.l-l

The aerodynamic forces per span are
usually derived assuming that the blades
are undergoing the travelling wave motion
of eq. (‘),Whiteh..d (1966), Smith (1972).
Adamc2yk and Goldstein (1978). Under this
assumption the forces per span acting on
the zeroth blade undergoing the nth
travelling wave, constant interblade phase
angle motion of eg. (4) can be expressed
as

22, = _jot
£3 = npy u?tpn?’nr n

where qgn is the amplitude of the nth
travelling wave pattern, and the complex
force coefficient due to Bn is 14, -

The force on the ith blade due
superpogsition of all the
angle waves is

to the
interblade phase

R-1
2 2 - 1P,
!: = Tpb™w nZ)"nq’n.J(ﬂ“ n’

S NS

()

At this point the three fundamental
equations of the aeroelastic problem are
at hand and will be repeated for clarity.
The first is the dynamic governing equa-
tion of motion, as would be derived by the
atructural dynamicist (eqg. 2).

[ @« [aloosmp Jiap = 23 @

where the structural damping factor g has
been added. The second 1is the kinematic
relationship between individua an

traveling wave blade motion (eq. S)

RRIL T8 DR O B e

where the last relation simply assumes
sinusoidal motion of the individual
blades.

The third is the relationship between
travelling wave motion and unsteady aero-

dynamic forces, supplied by the aero~
dynamicist (eq. 8)

{f:} = Dpb%’(E) r'an{;ﬂn} .°M an

These three fundamental relationships
can be combined to yield the governing
aeroelastic equations in several ways.
First, the equations can be expressed in
terms of interblade phase angle "modes”.
This requires transformation of the struc-
tural dynamic equation (9) to interblade
phase coordinates. Second, the equations
can be expressed in terms of individual
blade displacements. This requires trans-
formation of the aerodynamic forces, eq.
{11) to individual blade coordinates. And
third, the equations can be expressed in
terms of standing modes of the bladed
disk, such as sine and cosine modes, or
structural eigenmodes. This requires
transformation of both the dynamic equa-
tions and aerodynamic forces. Each of
those approaches has some value, as will
be discussed,

Travelling Wave Formulation

The aeroslastic eigenvalue problem wasg
first formulated in travelling wave coor-
dinates, that is in those coordinates for
which the aerodynamic forces are derived,
Whitehead (1966). In order to derive the
equations in traveling wave coordinatas,
equations (10) and (11) are substituted
into equation (9), giving:

-«lz[\-1 ][E]{;’n} eIVt o
. r'iﬂf(l'“i)\ltnl{zﬂn} ot (12)

N AR

premultiplying by E~l, and cancelling the
time variation exp{jut) gives

~'e? [\'1\]@1{3;“} *
i EXC-CR RN A

-l 15}




Equation (13) now represents the
formulation of the aeroelastic problem in
terms of travelling wave coordinates, It
has the advantage of using the aerodynamic
force coefficients in exactly the form in
vhich they are derived. Purthermore, if
the blades have a single degree of freedom
and if the blades are uniform in mass and
stiffness such that

[e] = =0

(1)
w [eploes) ] - wiosmrn

then equation (13) becomes

-u‘m{q',,n} . -sﬁmu)m{q‘,n} e
= apn? F 'nnJ{“-n,,}

which 1is the governing homogeneous equa-
tion for single degree of freedom flutter
for a perfectly tuned rotor. Note that
the separate equations in equation (15)
are completely. uncoupled. This implies
that fora tuned rotor, the travelling wave
coordinates are the normal aerocelastic
eigenmodes, and the eigenvalues associated
with each mode are directly related to the
unsteady aerodynamic coefficients for that
interblade phase angle.

-|-a2 * -v:(lﬂg) - Ilpbzezc
g A1)

o v (1+lIpb ep/-)
n

& (16)

It is an advantageous coincidence that
the kinematic assumption of constant
interbalde phas travelling wave coordi-
nates made by the unsteady aerodynamicist
eventually turn out to be the eigenmodes
of the aercelastic problem for a tuned
rotor. The disadvantage of this formula-
tion is that it requires transforming the
structural model to travelling wave coor-
dinates, in effect forcing the structural
representation into a form chosen for its
convenience in the unsteady aerodynamic
problem. Although not inconvenient for
tuned rotors, transformation of the
governing equations to this form makes it
very difficult to interpret the aerocelasg-
tic response of mistuned rotors with non-
uniform blades, and difficult to explic-
itly include the effects of shroud and
disk elastic coupling, Crawley and Hall
(1985), Kielb and Kaza {1984). Although
the representation of the aerodynanic
forces 1in this form obscures the real
physical dependence of forces on specific
blade motions, Szechenyi et al (1984),
much more 1nsight into these aspects is
gained by examining the equations formu-
lated in terms of individual blade
coordinates.

Individual Blade Pormulation

In order to formulate the problem in
terms of individual blade coordinates, the
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aerodynamic forces must be transformed by
substituting equation (10) into equation
(11), yielding

) = 1adPas,} o

(17)
where [L] = (E] re,nJ[B]"

The flutter equation is found by sub-
stituting into equation (9)

~[u JE) + [‘-wfwakl{i} -
»202&]{;1} (18)

which is the aeroelastic equation in terms
of individual blade coordinates. The
principal advantage of this formulation is
that it is expressed in a coordinate sys-
tem which is a natural one for the
structure. Thus, if any complicating fea-
tures are added to the atructure, such as
disk elastic coupling, shroud elastic
coupling, blade nonuniformity or mis-
tuning, or multiple blade degrees of
freedom. This is a simpler starting point
for the resulting model than the
travelling wave form,

Another advantage of this formulation
is that although the aerodynamic coeffi-
cients must be transformed into the (L]
matrix form, the aerodynamic coefficlients
as they appear in the (L) matrix give tre-
mendous insight into the unsteady aerody-
namic interactions in a cascade. Each
term 1in the aerodynamic influence matrix
(L] has a unigue physical significance
(rig. 2). The term in the first row and
the second column, for example, designates
the force acting on the first blade due to
the motion of the second hblade. By the
symmetry of the rotor, assuming that the
blades are geometrically identical, this
must be the same as the force felt by the
second blade due to the motion of the
third. Likewise, each term on the dia-
gonal represents the force felt by a blade
due to its own motion. The [L] matrix has
the form in which there are only N inde-
pendent complex terms, and the entries of
each column are the same, with each column
permuted one row relative to the adjacent
columns.

o Walpe" "1y
e T T . R )

L] = : : (19)
1 lp2 v * * ° Lo
The wost significant term in [L] 1is the

diagonal term L,, which expresses the
force acting on any given blade due to its
own mwmotion, in effect the blade self-
stiffness and self-damping. It has bheen
shown that this is the only term in the
influence coefficient matrix which can
provide a net stabilizing influencing on
the rotor, Crawley and Hall (1985),
Szechenyi et al (1984).
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Mathematically, the individual blade
aerodynamic forces Lgx are related to the
travelling wave forces through a complex
Fourier transform relationship

N-1
- llfnzo'p,“’{i‘"l"‘*} (20)

and
N-1
2Kn
4 = 2 el a
Equation (20) shows that L, 18 just
the K¢, coefficient of the discrete

Pourier series representation of tg, given
in equation (21}. So, for example, if a
plot of the aerodynamic coefficients ver-
sus B8 is dominantly the first harmonic of
8 and an average offset, this implies that
[L] is almost tridiagonal, and the physi-
cal interpretation {s that only the two
adjacent blades to a given blade and the
blade itself have any direct effect on the
blade (Figure 2). If the plot of Ly, vs. B
has higher harmonics in 8, then the influ~
ence of more distant blades is relatively
more important.

Standing Mode Formulation

When the starting point of the aero-
elastic formulation is a set of calculated
or experimentally measured standing
structural eigenmodes of the bladed disk
assembly, it is desirable to formulate the
aeroelastic problem in terms of these
modal coordinates, Brooker and Halliwell
{1984}, Crawley (1983).

1f the rotor is tuned, then there will
be pairs of repeated structural eigen~
values. In this case, there 1is not a
unigque representation of the eigenvectors.
Two natural ways to represent the mode
shapes are by forward and backward travel-
ing waves, or by sine and cosine standing
waves, Dugundji and Bundas (1984).
Bxpressing the motion of the rotor in
terms of sine and cosine modes, also known
as twin orthogonal wmodes or multiblade
coordinates, gives the representation

q =b +Z ‘h°°"”'x) +3 nhlin(nox)

ne 1205 for nod, (22)

n= 1.2.'-°.; for K even,

m
Ll

which still allows arbitraryu time depen-~
dence of the motion, If the motion is
assumed to be oscillatory, the displace-
ment is

‘71 - ;m + ;uco-(ﬂi) +2 q—-noln(nOl) (3)

which can be written

—

a) average offset represents blade’s inlluence on hself, L 0

—— 2

—_—
, . 1 * L,
4 .
TIRY i —
T B 0
A

—_———_ > LN-!

-——\_2

b) first harmonic represents neighboring biade Infiuence,

Ll and LN-l
L 2 » L,
D ~ o, 1
LAY 4
Y /N —
7 7 o Bn 0
i o

2+ Ly,

¢} second harmonic represents influence of bfades two
stations away, L ,and L |\ .

Figure 2. Graphical Relationship Between
Aerodynamic Forces in Inter-
blade Phase and Complex
Influence Coefficient Porm
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Since equation (23)
relationship between the individual and
sine/cosine modal coordinates, the aero-
elastic formulation can be transferred to
these coordinates Dby simply substituting
eguation (24) into, eguation (18} and
premultiplying by p-l giving

expresses the
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The process of deriving equation (15)
from equation (8) is a similarity trans-
form, in which eigenvalues are preserved.

The unique aspect of the pure sine and
cosine standing modes 1is that a pair of
like nodal diameter modes can be directly
superimposed to form a traveling wave
mode. By comparison of equation (10) and
equation (24), it can be seen that

{8 ) - ' e (20)

Yan,

If the rotor is mistuned, or contains
coupled bending torsion motion of the
blades, it is no longer simple to relate
the standing and travelling waves, but it
is still straightforward to relate the
standing blade-disk modes to the indi-
vidual blade deflections. The ith plade
deflection 1&g given as

N-1
q1 = n;’sn)qn (&)

which can be written

{a,) = [$]s,) (28b)

where ¢ is the matrix whose columns are
the traditional structural modes, and q,
are the coordinates of those modes.
Comparison of egquation (24) and equation
{29) show that for perfect aine and cosine
twin orthogonal modes that P matrix is
just a special case of the normal modal
vector matrix ¢ under the assumption of
sinusoidal motjion.

ARG ()

and substitution into equation (18) and
premultiplication by ¢T gives the aero-
elastic formulation in terms of arbitrary
blade-disk modal coordinates

Aol r';J[W{an} + 41T r'x“f("“t’J[m{;n}
- 1? Pz} o)
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Note that the left hand side of equa-
tion (30) will now be uncoupled, &ince ¢
are the structural normal modes, but these
modes will be aerodynamically coupled by
the terms on the right hand side.

The advantage of this formulation is
that the starting point is the aet of
blade disk normal modes, which can incor-
porate all forms of blade, disk, and
shroud elastic coupling. The disadvantage
is that the aerodynamic forces in the form
in which they appear in equation (30), and
the resulting flutter sigenvectors may be
difficult to interpret physically.

FORMULATION FOR MULTIPLE SECTION DEGREES
OF FREEDOM

So far the various formulations for
single blade degree of freeedom flutter
have been outlined., However, it is often
desirable to include multiple Jdegrees of
freedom for each blade in the aeroelastic
nodel, Bendiksen and Friedmann (1980),
Kielb and KRaza (1984).

For such a model, such as a bending-
toreion coupled typical section analysis,
the equations presented above are still
valid, but must be generalized appropri-
ately. This generalization process essen-
tially consists of letting each scalar
guantity in the equations (9), (10), and
(11) take on a sub-matrix nature. The
three fundamental relations for one degree
of freedom system are summarized here
again. The dynamic equation of equilibrium
is

[aJip + [l Jiag = ¢ @

the kinematic relationship between stand-
ing and travelling waves is

AT R (10)

The dependence of the aerodynamic force on
motion is

(€3} = Bop ?(E] r"nJ{q—"n} ot 1)

If each section is allowed a translational
and pitching degree of freedom, then the
generalized coordinate sub-matrix wmap to

ai
9 —a ] w]t (31)

where h is the translation of the section,
and a is the pitch. The other terms in
the equation (9), therefore, map as
follows
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— n &
" B = [Slb ”"3]i (32)
n,o2(10sg,) — [mi(1035)), = (33)
wd(1+385) 0
12
L] —!(HJ".)
¥ i
-1/
o — L, = [ 2] (34)
3 { ' .

In this typical section analysis all
of the generalized mass and force terms
are defined on a per unit span basis.

The pitch motion is defined about the
elastic axis, such that the stiffness,
sub-matrix in equation (33) is diagonal,
but the inertia matrix is populated. Note
that the wusual (unfortunate) aercelastic
convention for positive signs has been
used (Figure 3).In modifying the kinematic
relationship (equation (10)) the traveling
wave coordinates also take on two coor-
dinates for each interblade phase angle

/b
Q&l-_’Sﬂ‘. rﬁ;‘] {36)

The E matrix is now fully populated by
sub-matrix blocks

(36)

—_— E Ek' °
BEe B, [ o‘ F_“]

so that the E matrix has the forw

hb'o 0 E,, O Ep, O ves
0 Fpo O By O By
[E] - El'o o M

OElo D

| J

(31

Finally, the aerodynamic forces and
moments now depend on translation and
pitch, so that

b= [;Z;L (38)
Ilpbz.,a:z [mnu:'; ’:u].l (wt+1p,)
Bob2 02:_2: [‘ﬁ /M’:';p +¢:'; p/“]a.l(utﬂﬁn)

where equation (38) includes the effects
of impinging wakes of velocity wg, and of
periodicity B8, being convected into the
cagcade. Equation (38) can be written

ot

 ° |- i, [ oo

[:’:;]l—l + 1?PE) [\5. n\]{;ﬂ:" Jot

provided E has the definition of equation
(37), qgp has the definition of equation
{35), ana ¢ is defined as

Ll oo
L R e

with these relationships, the bending
torsion aercelastic problem has the same
notation as the single degree of freedom
problem and all the transformations de-
veloped above can be employed. The aero-
elastic problem can ba formulated in terms
of travelling modes, individual blade
deflections and standing modes of bending-
torsion deflection.

FORMULATION FOR MULTIPLE SPANWISE BLADE
MODES

In order to gain a more accurate model
of the aeroelastic behavior of a turbo-
machine component, it is necessary to in-
tegrate the unsteady aerodynamic forces
over the entire span. Whether two~dimen-
sional strip theory operators (Chapter
3) or a full three-dimensional wmodel is
used (Chapters 4 and 5) will depend on
the availability and refinement of such
operators. The 1inclusion of spanwiss
integration of aerodynamic forces in the
aeroelastic formulation is a straightfor-
ward extension of the results of the last
section. The governing dynamic equation
for the { =~ 0,1,..., N-1 blades is now

o, @)+ Pxaesen J{e,}

-{&2) @
with »=1.2,°*- M for every 1x0,1,%+» N-1




where the generalized displ:ﬁcmonts and
generalized forces of the | blade are
now represented at N/2 spanwise stations

X -Lllrllb
h,/> 2
— a lllrllb
o), = "2 (E), = | Toi7? («2)
% Mohr e
w2l o2 2

Note that the mass matrix of equation (41)
now has units of mass, rather than mass
per span, and the other matrices have been
redimensioned accordingly. The formula-
tion of equation (41) still assumes that
shroudless blades are rigidly fixed to a
stiff disk, such that no structural coup-
ling exista between blades.

Rather than solve the coupled
structural-aerodynamic problem, the usual
procedure is to solve equation (41) for

- the structural normal modes of the ith

blade,

(i.e., with f; set to zero), by
solving

~ [lrl],{i.), + [K(l;.lz)]‘{g.)‘ =0 (D)
MxN ol
e The result of the structural eigenvalue

problem for the ith plade is a set of M
natural frequencies and mode shapes.

hl"’} (r)
*
hy/b
“, * ofP) - z | PELBX (0
2

and an assoclated set of blade modal
coordinates Npi

- In the aercelastic problem, only a few
of the blade modes are generally of
interest. Let the number of wodes of
interest be P, so that the displacement of
the ith blade is expressed in terms of P
modes

( '( - ® o '( .
3 ] ) ‘ ‘E )

L4
@h=|t
e

i

and upon substitution into equation (41)
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with p=1,2,¢++,P for every 1a0,1,°°* ,N-1

where the wmodal mass, modal stiffness, and
modal force associated with these P modes
are

], = o300, 0%, )
[\'bzg""’v\]i e [PITIK(4I0),IP),  (49)

o}y = IF1 e, ()

With these definitions the left hand side
of equation (46) is completely uncoupled
and the mapping of the multiple spanwise
blade mode problem to the simple single
degree of freedom problem of equation (9),
{(10), and (11) is possible.

Por the displacements, the generalized
displacements wap to the blade modal

coordinates
™
q‘ —_— (np)‘ - ':2 (m)
P 1

for the inertia term the inertia maps to
the modal inertia

1
b S [\!P\]g B = .. e
%

and the stiffness terms map to the modal

stiffness

nod1esg,) — [\h’(}ﬂc)p\]‘ =

N lﬂg( 1"'-"1 )
L] T (52)

Mp(1+1gp) .

and, finally, the blade force f; maps to
the blade modal forces
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(53)

’

’1 — ‘Fp,i‘

.'ll’ ' ”'ﬂ

The proper transformation of the blade
aerodynamic forces acting on the blade
modes is somewhat complex. Careful atten-
tion must be paid to keeping track of
effects at the same spanwise location
a{ound the rotor versus effects along the
blade.

When written in the notation of equation
{53), the forces acting on the blade modes
of the N blades in terms of the motion of
the modes of the {individual blades is
given by equation (54). Note that the form
assumes that aerodynamic strip theory has
been used. The transformation matrix T is
used to change the order of notation for
blade degrees of freedom from that used
for the structural problem (inner 1loop on
ths blade DoF) to that used in the aerody-
namic problem (inner loop on the cascade-~
wise coordinate).

'(Fp) i=0 [:p] 1s0 Ar
n [E]
(Fl.)) iml - u’bzuz k’] {1 IT -t Ar =2[1] , [ [E]
(F5) -1 2ot "rgyl 1] m®
¢ v "
[, ]T' ] e I ]‘:,1 g:;,.o
#y oz w! i Kl P e
‘. ; R " N -
| ORI Pl
(q!}—1 (%}1ﬂ

where the transformation
[T] is defined by :

Owa| o[t

{9}y L A
imner loop inner loop over:

over { blades = blade stations

If the aerodynamic forces were derived
from a three-dimensional aerodynamic model
which assumed a travelling wave pattern of
an assumed blade mode shape, then the
aerodynamic forces are

(Fp) R llpbaozh [\tt]\] ['S-D] F[E] J-:,_,p)ie-i“‘ (55)

where the 1j_p matrix is the representa-
tion of travelling wave three~dimensional
unsteady aerodynamic forces due to travel-
ling wave motion (Chapters 4 and 5).

It may be desirable to express the
aeroelastic equations of motion of a com-~
plete rotor in terms of both spanwise
blade modes and coupled blade-disk circum=-
ferential wmodes. In this case the formu-
lation for blade modes of his section can
be coupled with the formulation for stand-
ing blade~disk modes given above to yield
the governing equations of motion.

of the 1" blade

To this point all the necessary trans-
formations and formulations have been
rigorously developed to express the spa-
tial (i.e., spanwise and circumferential)
dependencies of the aeroelastic
formulation. However, the entire formula-
tion to the point, except for the basic
equations (3), (4), and (9) have assumed
temporally sinusoidal motion. This is Jue
to the assumptions inherent in the deriva-
tion of the aerodynamic operators. In the
next section, solution techniques for the
sinusoidal formulation will be presented,
and in the following section, an approxi-
mate transformation to an explicit time
accurate formulation will be discussed.

SOLUTIONS FOR SINUSOIDAL TEMPORAL
REPRESENTATIONS

Under the assumption that the aerody-
namic operators are only available for
sinusoidal motion, the steps remaining
after formulation of the aercelastic pro-
blems are its proper nondimensionalization
and solution for stability and forced
response. For reference, the dynamic
equation of equilibrium, assuming sinu-
soidal motion is




'“2[\51\]@1"’“ + r‘a“f(l*-")J Gt

=) 8

Generalized forces on the ith blade due to
the nth travelling displacement wave
pattern and the wake forced vibration
terms are

£ <MPh22(E] [[\£ﬂn\] {Fp n}, [\s.n\]{:g-*-}].s (uun,(,;_)n

This will be referred to as the t formula-
tion of aerodynamic forces. Note that the
forces are nondimensionalized in time by
the square of the frequency of
oscillation, and therefore have the form
of virtual inertias. A second common form
of the aerodynamic operators 1is (Chapter
I11)

AR g iy (N S

(s8)

in which q (unfortunately) stands for the
translational velocity, and a for the
pitch angle (Fig. 3). If the assumption
of sinusoldal motion is made, and the
coordinates are agsumed to he the trangla-
tional and pitch displacements, and wake
velocity amplitude, then equation (58) can
be Tanlpulted to have the form of equation
{57).

'y
Yy
b —ste—b ——f
-b{ ba
B
. ' .
x
v
w

gust

velocity
Figure 3a. Notation Convention for 2-dof

Model in the 1 Force Notation
®, F

gust velocity

v '%&;;::!25%»

%
fe————nc——|
c »| X
]

Figure 3b: Notation Convention for the 2-dof Model
in the C, Force Notation [Chapter 3]

19-11

e[

2"qu mFa —%l- - mrv v oI (vt
= opt? 12y, 45, ;pnl [ﬁ']{fﬁs.}] (vt+180)

This will be referred to as the cy formu-
lation for the asrodynamic forces.

If the homogeneous aerodynamic force due
to translation and moment due to pitch are
examined in the C, form, they are

1, - £=oot? [mcrql(ﬁpnm (60)
. -—
f‘ - :2- le!z(ﬁ‘..a)apn (61)

In contrast to the ¢ formulation, the
aerodynamic forces in the c, formulation
are nondimensionalized in time by the
square of free stream velocity in the case
of the moment (eq. 61), and by the velo-
clity and frequency, in the case of the
force, (eq. 60). Therefore these terms
appear in the equations of motion as vir-
tual stiffness and damping 1like terms,
respectively. Note that in the ¢t form
there is an explicit frequency dependence
but no explicit dynamic pressure depen-
dence, whereas in the c, form, there is
explicit dynamic pressure dependence, and
the explicit frequency dependence is dif-
ferent from that in the former. Thus in
comparing reduced frequency dependence of
the nondimensional aerodynamic forces, one
must keep in mind that the form of the
nondimensionalization impacts the apparent
trend as the reduced frequency 1is varied.
Of course, as always, one must pay close
attention to the sign convention for posi-
tive moment and displacement, and for the
chord location which is used for the coor-
dinate system reference. A sgummary of
these conventions for the t and ¢y forms
is given in Appendix B. The nondimension~
alization and solution technigues will be
developed for the simple single degree of
freedom equations (%), (10), and (113,
since it was shown above that the problems
with multiple blade degrees of freedom
were simply extensions of the one Dof per
blade formulations.

Continuing with only the & form, combi-
nations of eq. (9), (10), and (11) give
the aeroelastic problem formulated in
individual blade coordinates as

*’F-t J{E,} * ['t“f(‘*"t’J{;i} =
- wdP[e, Jrrlfs) (e

= llpbzuz[l.]{;‘}
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Division by the blade mass of a sec-
tion of the nominal blade gives wus the
nondimensional form of the problem

n’[[ﬁw,\] . ;ﬁ{L]]{-‘:‘,} - [osspass )@}

where e; and &g are the (fractional mass
and stiféness mistuning of the 1ith blade,
2 is the nondimensional eigenfrequency,
9= o/ug + and p is the ssction mass
density ratio

- 2 (61)
* lpb2

which premultiplies all of the aerodynamic
terms in the governing equations. Note
that in the form of equation (64) the mis-
tuning or nonuniformity effects appear
explicitly in the formulation.

Equation (63) is of the form of a
traditional aeroelastic eigenvalue problem
used to determine the stability of the
system. The task is to solve for the com-
plex eigenvalues of equation (63), The
eigenvalues in general will have a nega-
tive real part or a positive real part,
indicating mode stability or instability,
respectively, The contradiction present
in the formulation is, of course, that the
system eigenvalues are either exponen-
tially damped or unstable, but in general
not purely sinusoidal, while the aerody-
namic forces were derived assuming pure
sinusoidal motion. Furthermore, these
aerodynamic terms depend implicitly on the
reduced frequency, but the actual fre~
quency of oscillation is not known until
after the eigenvalues are determined.

The traditional solution to this
problem is the so-called V-g method, in
which the atructural damping 1is assumed
uniform, and treated as a free parameter,
Bisplinghoff and Ashley (1966), Rewriting
equation (63) under these assumptions

[P s -sbrondld
whare %e ‘—‘31

For a fixed reduced frequency ki . the
eigenvalue problem is then solved for the
complex eigenvalues , and for each the
frequency of oscillation and . damping
factor are calculated

0 = (te())"/2
£ = n(2)/%e(T)

(68)

where g is interpreted as the degree of
structural damping necessary to provide
neutral (oscillatory) dynamic behavior.
The corresponding velocity is then

u-!lln (e7)

Por a N degree of freedom sgystem thia
will produce N points on the V-g diagram,
as shown in Figure 4. By choosing various
values of k, families of curves of re~
quired damping can be plotted. The sta-
bility boundary is then defined as the
velocity at which the required damping
exceads the structural damping actually
present in the rotor.

Unlike in aercelastic analysis of air-
craft, a key simplification of this pro-
cess can usually be made for gas turbines.
Since the mass ratio is usually large (u>>
10), the aerodynamic forces are very small
compared to the 1inertial and elastic
forces acting on the blade, that is 2/u<<
1. Therefore the oscillatory component of
the aercelastic eigenvalue is usually very
close to the reference frequency, implying
that the reduced frequency for all of the
ejigenvalues is very close to the reduced
frequency associated with the natural
frequency.

This relative weakness of the aerody-
namic terms leads to treating equation
(63) as a standard eigenvalue problem.
That is, a reference value of the reduced
frequency 1is calculated based on the
structural frequencies at speed but 1in
vacuum, The aercelastic eigenvalues are
all then calculated and used as 1is, since
little difference between aeroelastic and
in vacuum frequency is present.

% - Points derived for a
single vaiue of k

V for instabitity
T unstable
] *! g s 0
//x
o o v

x__—.—-

X\_

N
Figure 4: V-g Representation of System Stability




If more accuracy is desired, then two
approaches are available. 1In an iterative
approach, after the first calculation, the
reduced frequency is modified based upon
the calculated oscillatory component of
the most critical aerocelastic eigenvalue.
This iteration is then continued until the
reduced frequency assumed in determining
the aerodynamic coefficients, and the cal-
culated reduced frequency of the most
critical eigenvalues converge. This pro-
cedure resembles the traditional p-k
method of aeroelastic analysis.

A second procedure which eliminates
the need for this iteration is based on
expanding the explicit functional depen~
dence of L on k. If the aerocelastic coef-
ficients are locally fit by a least
squares procedure to an eéxpression of the
form

i iy b

0= wip = W

Substitution into equation (63) gives a
new eigenvalue problem

(68)

[”z[[\"en] + &{LJO] + "-3[1.]1 + ;1;{1-12]{31} =

- [“(1+4¢1)(1¢6‘)J{31) (69)

which can be rewritten as a standard
eigenvalue problem and solved directly for
the aeroelastic eigenvalues.

The results of these formulations are
aeroelastic eigenvalues which can be
plotted in the complex plane. If the
traditional complex s-plane interpretation
is desired, then the plot must be of

s = i (70)

as shown in Figure Sa for a single value
of reduced frequency k. 1f a range of k is
plotted, the root locus of the individual
eigenvalues plot out as curves originating
at (0 ¢+ 13 ) in the case of no structural
damping. Instability is then defined to
occur as the first root crosses into the
right half planes (Fig. 5b).

There remains in all this analysis the
contradiction that the system behavior is
non-oscillatory, while the aero forces
were derived for oscillatory behavior.
wWhere accuracy 1is most needed, at the
point of neutral stability, the behavior
is truly oscillatory, so the aerodynamic
forces are exact. Common sense would
dictate that for lightly damped and mar-
ginally unstable systems, the stability
margin would approximate the true damping
ratio of the system. This, in €fact, has
been shown to be the case, but a proof re-
quires the expression of the aerodynamic
forces in time explicit form, Dugundji and
Bundas (1984). An approximate scheme for
this time accurate representation will be
shown in the next section.
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EXPLICIT TIME DEPENDENT FORMULATION OF
AERODYNAMIC FORCES

While sinusoidal representation of
motion is adequate for stability analysis,
it is sometimes desirable to express the
aeroelastic equations of motion with ex-
plicit time dependence of the unsteady
aerodynamic terms. Examples of when this
might be needed are when the excitation or
response is expected to differ from a
sinusoidal behavior. Such non=-sinuscidal
behavior occurs in certain forced vibra-
tion phenomena, such as impacting or
mechanical rubs, and time unsteady aero
disturbances, such as rotating stall and
surge. Furthermore, whenever time march-
ing calculations are to be done, it will
be necessary to have the aerodynamic
forces in a time domain representation.

Unfortunately, the unsteady aerody-
namic operators have been derived assuming
sinusoidal behavior in time and travelling
wave constant interblade phase angle in
space. In the special transformations
above, a complex inverse discrete Fourier
transform (eq. 17) was used to remove the
restriction of assumed travelling waves,
and to express the aerodynamic forces in
terms of the individual blade motions.
The resulting form was

im(s)

stajle | upstable

D Re(s)

Figure 5a: Complex s-Plane Interpretation ot
Aeroelastic Eigenvalues for a Single k

Im(s)

¥"

E
\\\s
stale |  upstable

0 Re(s)

Figure 5b: Complex s-Plane Interpretation of
Eigenvalue Root Locdl for increasing k




19-14

1) = a R, o m

where each column of L was identical, and
shifted down one row relative to 1its
neighbor. Thus all the diagonal terms are
Lo + the blade's aerodynamic force on
itself, the first diagonal below the prin-
cipal is L; , the effect of the adjacent
blade downstream, etc. (eq., 19). . The
elements of the matrix L are of course
complex and functions of the reduced fre-
quency k. The reatriction of sinusoidal
temporal behavior was therefore still
present.

In principle, a complex inverse
Fourier integral in the reduced frequency
parameter k, allowing k to range from zero
to infinity, could be taken of the ele-
ments of L in order to explicitly trans-
form them to the time domain, In
practice, the frequency dependence of the
L terms is either expressed as a very com-
plicated expression of %k, or, 1if L |is
found through computational techniques,
never written as an analytic function of
Ko Thus approximate transform techniques
from the frequency to time domain must be
used.

The most popular approximate transform
technique for unsteady aerodynamic forces
involves the so-called Pade approximation
of exponential lags in the aerodynamic
forces, Edwards et al. (1979). In order
to prepare the aerodynamic coefficients
for this approximation procedure, it is
necessary to convert the coefficients to a
form in which the frequency does not
appear explicitly in the nondimension=-
alization

;)= mo? [52“2 1-]]{;1}““ - OpU% [fi'.l[,{it ot

(72)
where [C]L = kz[l-]

The c; form of the coefficients is
similar, but not identical to the c; form.
Now a general approximation to the time
dependent form of the aerodynamic forces
is introduced

2 Ll L
() - ﬂv“’[ﬁgfclz{'l,) + Bc1, (4, + [Clyia,) (
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tél,, t«'s], t«'u,

where C3 , C; and Cy are real circulant
matrices of the same Icrm as L (i.e., only
N unknowns, all columns {identical but
shifted). The matrices C; , C) , and Cp
represent the inertial, damping, and
stiffness effects of the aerodynamics.
The matrices G5, G, G, etc. are aparse
real circulant matrices with only one en~
try per column, They contain the impact
of the relative lags in the aerodynanmics
on the blade forces. G;, for example,
contains the coefficient “which expresses
the lagged forces of the {+j blade on

73)

The vactors of Y; are augmented
states, related to qj by

b .(‘) & |  { eee N~
gis +sof = § 4, and :’-3111...:2_} (74)

In other words, the y; variable 1is a
first order lag of time constant ggs ON
the rate of change of the displacement qg.
The time constants are the same for ail
the nominally 1identical blades. Such
approximations are motivated by their suc-
cess in approximately unsteady aerodynamic
forces in external flows and cascades.

In order to evaluate the unknown con-
stants in C9, Cy, Cg, Gy, G; etc., egqua-
tions (73) and (74) are expanded to
examine the forces acting on the zeroth
blade. Equation (73) gives

2
b o - "

1, = Gpo” 2(%0.2% * Cr gt * 00t * Qe piyy)
+ E‘co.l:'o +C 9+t Gy i)
* (C0% * €00 * ** ¢ Gy ot-1)

+ (co.oyc(;o) + “1.1’{1)+ et °n-1.n—1’l((!;”)]
(75)

b (2 & b f 1=0,1,°¢+ K-1
g cep{® - ga, Df i e
Assuming pure sinusoidal motion

{qi) = {a’l}'“t (77)

then substitution intc equations (75) and
{(76), and combining the two, the force on
the zeroth blade can be written

2
K ~ Jot
£, = B0 {["‘z'b.z’-"“"o.1"’0.0«;0-6:.5‘5‘L %
2
K+ —~ _jut
N [—k’cl gHIC, 19T, o) 1';2“%"'* q,e

o 0o (78)

If equation (72) is expanded in a
manner similar to equation (78), then the
force on the zeroth blade is

t, = {[mate, ) + ssmicy ) [7e™
4SRRI

e (79)




By comparing equations (78) and (79)
term by term, the following relationsg are
apparent

2 .
¥
A%, 5+ €, 0 cr.rT_‘r’? = %(q ) (80)
ke,
r‘

wl‘.l + cl‘.l‘?? - .’I(CLP) r=0,1,00°,N-1

where the C's, G's, and ¢g's are real con-
stants to be determined, and Cp, i2 a
complex function of k.

All that remains is for the real un-
knowns to be determined by a fitting pro-
cedure, such as a least squares fit to Cp
versus the reduced fregquency k for eac
value of the index r. Such experience in
fitting sometimes produces an adequate fit
using the single lag pole shown. This is
true for the case of an incompressible
cascade, Dugundji and Bundas (1984). More
accuracy 1is attained by introducing a
second set of poles g' and asgociated con-
stants G'. The classic Jones approximation
to the Theodorsen function is an example
of this kind of two pole fit, Bisplinghoff
and Ashley (1962).

Once the aerodynamic constants have
been determined, the governing equation of
equilibrium, equation (9),and the time do-
main expression for the aerodynamic forces
can be combined into a single expression.

r-’. J (.q.‘) + r-tuf( l’:‘x) J (ql) =
2 -
m’[‘;'g[c],{ag + BCL{a ) + [C) {a,)

te1,{#{} + 11, {#{"} + e, {+i} +] e

where 'ﬁ{ig‘)} + [\s,\]{yg')} = 'ﬁ(i,)

¢ =0,1,°"°,N1

If a similar procedure 18 used to
represent the unsteady wake or gust re-
sponse function, then a complete time
accurate time domain representation of the
asroelastic behavior can be achieved.

TRENDS IN AEROELASTIC STABILITY

As with many engineering analyses,
there are certain dominant trends in the
analysis of the aercelastic stability of
turbomachine rotors. Some, such as the
role of the mass ratio or the importance
of blade mistuning can be determined sim-~
ply from careful examination of the
governing equations. Others require solu-
tions for ranges of parameters to deter-
mine overall trends. 1In this section four
trends will be addressed: the stabilizing
and destabilizing influences in a cascade,
and the critical role of the blade self-
damping; the effecta of bending-torsion
coupling; the real rotor effects of load-
ing, three-dimensionality and stall; and
the differences in analysis of actual
rotors and "rubber" designs.
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Stabilizing and Destabilizing Influences
in Cascades.

Simply from examination of the stabil-
ity eigenvalue problem, certain stabiliz-
ing and destabilizing effects can be iden-
tified for a single degree of freedom
flutter madel. The nondimensional form of
the stability problem, equation (63), is

Ll avsepoeey G} - [[‘m,\] . ,l,m]{i,}

(82)

in which g is the structural damping §,
and ¢ the stiffness and mass nonuni-
formity, and L, the complex aerodynamic
influence coefficients of the form

o '"J.‘J'-"'

Ly Ly In2° -
L Ly Lyt
mlafe, v, L, .-

";-1 ‘1.1-2 ";c-s I,

(83)

In order to identify the stabilizing
and destabilizing influences, we simplify
the problem by allowing the blades to be
uniform in stiffness and structural
damping. The governing eguations for one
degree of freedom per blade flutter are
then

Ao} - 4] e ] s} oo

The remaining parameters in the pro-
blem are the structural damping g, the
mass mistuning ¢; , the mass ratio y , and
aerodynamic coefficients L, through Ly .
Each of these terms somehow influences the
eigenvalues Q .

The complex eigenvalues of equation
(84) form a pattern in the s-plane, with s
= jQ, as shown in Figure 6. This pattern
can be considered to have a centrolid, and
the eigenvalues are distributed about this
centroid.

The location of the centroid is criti-
cal to the stability. If the centroid is
in the right half plane, then by defini-
tion some eigenvalues will be in the right
half plane, and the system will be
unstable. Thus, to assure system stabil-
ity the centroid must be in the 1left half
plane. Returning to equation (84), it has
been shown, Crawley and Hall (1985), that
the only terms which can exert a net
stabilizing influence on the rotor are the
structural damping g, and the term L,,
which expresses the aerodynamic force felt
on the blade due to its own motion. To
show the importance of this term, conaider
the problem of equation (84). Making use
of the matrix property that the sum of the
eigenvalues of a matrix equals the trace
of the matrix, we have the following rela-
tionship for the sum of the eigenvalues:
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In the absence of unsteady aerodynamic
forces, the reference blade vibrates at
at the nondimensional eigenfrequency
g= aop= 1. In the presence of aerody-
namic forces, which are small compared to
the elastic and inertial moments, & will
still be nearly equal to fig . The eigen~
frequency can be expressed as a sum of its
reference value and a perturbation from
the reference value fig .

Ry +f=1+1 {98)

The last step in eq. (86) is due to &R
being unity (see Eq. 68). Hence the
eigenvalues of eq. (85) can be expanded as

1

- hbwerve- SERE RECO RN )

For convenience, let s = gj. Substitu-
tion of eq. {87) into eq. (85) yields that
the centroid of the eigenvalues (Fig. 6)
is given approximately by

fe<od = io-[—t‘!-] -k

L (88)
fuie) = 1 -%a.[—ul -2
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Figure 6. B8B-Plane Interpretation of
Eigenvalues Showing Centroid
and Stability Margin Constraint

That 1is, in the absence of structural
damping, the real part of the centroid,
<s>, depends on the imaginary part of Lg ,
and the structural dawmping g . The
imaginary part of the centroid depends on
the real part of Ly and the mean value of
the mistuning.

The location of the eigenvalues in the
s-plane can be considered to be distri-
buted around the centroid. Recalling that
the system will be unstable if any eigen-
value is in the right half plane, the ob-
jective is to assure that the least stable
eigenvalue 1is as far to the left as
possible. If the rotor 1is unstable,
increases in stability can be achieved
either by moving the centroid to the left,
or by reducing the size of the distribu-
tion about the centroid, which pulls the
rightmost eigenvalue to the left.

Interpreted in this light, eq. (88) is
an important result, It shows that in the
absence of structural damping the centroid
of the eigenvalues lies in the left plane
i€ and only if Im(Lg )} is less than zero.
Since a necessary condition for aero-
elastic stability of the rotor is that the
centroid of the eigenvalues 1lies in the
left half plane, it can be deduced that a
necessary but not sufficient condition for
stability is that Im(Lp ) be less than
zero. This is equivalent to the condition
that the blades be gelf damped.

The location of the centroid is set by
the average value of the mass (and stiff-
ness) of the blades, the structural damp-
ing, and the blade self damping term. The
distribution of the eigenvalues about the
centroid 1is controlled by the nonuni-
formity in the mass and stiffness and by
the off-diagonal terms in the aerodynamic
influence coefficient matrix eguation (83)

(i.e., the unsteady cascade influences in
the aerodynamics).

Note that any amount of off-diagonal
aeradynamic influence, that {s any un-
steady aerodynamics effects due to neigh-
boring blades, will distribute the eigen-
values about the centroid, and therefore
move some of the eigenvalues to the right,
destabilizing the cascade. Thus, unsateady
aerodynamic interactions amongst the
blades in a cascade are destabilizing.

The distribution pattern of eigen-
values about the centroid is influenced by
the pattern of stiffness and mass mistun-
ing of the blades, but the location of the

. centroid is not influenced by the pattern

of mistuning so long as the average value
is zero. Thus, the effect of mistuning
is to reduce the influence of the blade to
blade aerodynamic coupling and move the
less stable eigenvalues toward the
centroid. Note that no amount of mistun-
ing will cause the centroid to move in a
stahflizing direction and no amount of
mistuning can increase the stability war-
gin of the rotor beyond that given by the
blade self damping.




PFinally, the importance of the mass
ratio and structural damping can be seen
for a one degree of freedom flutter by
examining equations (84) and (88). It is
clear that all of the aerodynamic influ-
ences are scaled by the mass density
ratio. In particular, i€ a necessary
stability criterion is that the centroid
of the eigenvalues is in the 1left-half
plane then for stability

Se<s> < O
{89)

N

A similar relationship is derived from
the previous tuned rotor analysis in which
a sufficlient condition for stability of a
tuned rotor was that

[
ale-eco =

for the largest positive value of the
aerodynamic coefficient L3n - In each of
these cases, the relative contribution of
the aerodynamic component and structural
damping 1is scaled by the mass density
ratio u .

In the limiting case of no structural
damping, the stability boundary is inde-
pendent of the mass ratio, since even a
small amount of destabilizing aerodynamic
influence will cause the rotor to go
unstable. However, in the presence of a
fixed nonzero structural damping ratio,
the mass ratio sets the magnitude of
destabilizing aerodynamic effect which can
be tolerated before the system becomes
unstable. If the rotor speed is increased
past the reduced velocity corresponding to
neutral aerodynamic stability for a fixed
structural frequency and damping, a rotor
blade with a larger mass ratio will be
more stable than a rotor with a smaller
mass ratio, as shown in Figure 7. The mass
ratio of course can be changed by either
changing the gas density, or by a change
in the blade material.

The stabilizing and destabilizing
effects for a single degree of freedom
flutter model can be summarized as
follows:

1, In the absence of structural damping,
the blade must be self damped, so that the
centroid of the eigenvalues lies in the
left half plane.

2. In the presence of structural damping,
blades of larger mass ratio are relatively
more stable than those of smaller mass
ratio for the same damping g.

3. The cascade unsteady aerodynamic
influences are destabilizing.

4. Structural mistuning does not change
the 1location of the centroid, but can
rearrange the eigenvalues to increase the
stability of the least stable root. The
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limit to the potential effectiveness of

mistuning is the centroid of the eigen-
values of the tuned rotor,

While these four trends are rigously
true for single degree of freedom per
blade flutter, they are generally appli-
cable to any turbomachine 1in which the
flutter dominantly involves a sasingle de-
gree of freedom per blade, This is gen-
erally true of solid metallic blades. in
the case of hollow or composite blades
with significant bending torsion coupling,
more judgment should be used in interpret-
ing these stablizing and destablizing
cagcade influences.

Bending~Torsion Coupling

Several authors have investigated the
impact of modeling cascade flutter as a
classical bending~torsion coupled problem.
In order to not confuse igsues, two dis-
tinct mechanisms of bending-torsion
coupling must be distinguished:

A. Single mode coupling -this occurs when
a single torsional mode has some
translational component, or a single
bending mode has some torsional
component. Although its origin may be
dynamic, this is essentially a kine-
matic coupling. It may be due to the
root not being supported along a line
normal to the elastic axis (i.e.,
structural sweep), the presence of an
offset between the elastic axis and
center of mass, the presence of aniso-
tropic materials or fibers, or the
presence of shrouds at tip or mid-
span;

B. Dynamic coupling between two modes -
vhich is the case when two independent
modes dynamically interact to cause a
classic bending-torsion 1like coales-
cence flutter.
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Figure 7: Seneitivity of Rotor Stabllity to Mass Ratio
for Single Degree of Freedom Flutter




In considering the effect of mistuning
on stabllity, one mwmust understand the
mechanisms of mistuningy; that is, what
physical effects cause a change in
stability. The auxiliary gquestions are
thent how much mistuning must be present
to consider a rotor mistuned; how much
change in stability margin can be achieved
by mistunings what is the optimal pattern
of mistuning; and what are the limitations
to mistuning for stability augmentation.

When deliberately introducing mistun~
ing for stability, one would like to pick
an arrangement of mistuning which provides
a large increase in stability for a given
level of structural mistuning. It has
been suggested, for example, that alter-
nate mistuning may be nearly optimal in
increasing the stability of shroudless
fans. In this first section, an appropri-
ate criterion for optimal mistuning will
be defined and typical optimal mistuning
patterns examined. In the next section,
the mechanisms and limitations of mistun-
ing will be discussed.

The selection of a definition of an
optimal mistuning pattern 1is8 of course
necessarily subjective. One must deter-
mine how to weigh the unlike quantities of
stability, mistuning 1level, and forced
response of the rotor, One choice 1is to
implement the level of mistuning as a cost
function to be minimized, and the desired
level of stability of the 1least stable
eigenmode as a constraint, Hence, the
optimal mistuning problem can be posed as
a constrained optimization problem.

The cost function which represents the
level of mistuning in the rotor should of
course strongly penalize large amounts of
mistuning in any single blade. The cost
function used by Crawley and Hall (1985)
is given by

1/n
H -

where n 1is in general some positive
integer. In particular, n was chosen to
be 4. Since this cost strongly penalizes
large amounts of mistuning in any single
blade, no blade mistuning becomes exces-
sively larger than that of any other
blade. That is to say that there will be
no "rouge blades” in the optimal mistuning
pattern,

The designer of a fan might wish to
specify that a fan have at its operating
point some minimum stability level. Hence
the stability requirements are simply that
the damping ratio of every eigenmode of
the mistuned fan be greater than some
minimum damping ratio. This 1is expressed
symbolically as

6 =L, -T20 1s1,2,0:¢.N (s1)

where r4 is the damping ratio of the ith
eigenvaluo, and T is the desired stability
margin. This requirement is shown graph-
ically in Figure 6.
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At this point, the optimization state-
ment has been completely specified. The
cost function to be minimized is a measure
of the 1level of mass mistuning to be
introduced into the rotor while the con-
straints are that the rotor meet minimum
stability requirements. The independent
variables are the individual wmass mistun-
ing of the blades or satiffnesas and the
governing system equation is equation
(63). This problem can be solved using
appropriate numerical optimization
techniques,

To illustrate the results of optimal
migtuning, consider a specific high bypass
ratio shroudless fan. The aeroslastic
behavior is modelled using a typical sec-
tion analysis by assuming a single tor-
sional degree of freedom per blade. At
this typical section, the relative Mach
number, M, is 1.317; the reduced
frequency, k, is 0,495; the solidity, is
1.40471 the mass ratio, 1s 1825 and the
nondimensional radius of gyration, r, is
0.4731. Because the computational daif-
ficulty of the optimization problem rises
quickly as the number of blades increases,
the number of blades of the fan was taken
to be 12, 13, or 14.

The unsteady aerodynamic model used is
the supersonic linearized model of
Adamczyk and Goldstein (1978). The aero-~
dynamic influence coefficients found from
this model are shown in Figure 9. Note
that Im(L, ) is less than =zero indicating
that the blades are self-damped. Hence,
although the tuned rotor is unstable, mis~
tuning may stabilize the rotor as previ-
ously discussed. Figure 9 also shows that
the neighboring blades and the blade it~
self exert the dominant forces on a given
blade. Therefore, the aerodynamic in-
fluence coefficient matrix 1is strongly
banded.
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Figure 9. Unsteady Aerodynamic Moment
Coefficlents Showing the Influ-
ence of the i-th Blade on the
14th Blade in a l4-Bladed Rotor




19-20

Figure 10 shows the eigenvalues of the
14-bladed tuned rotor in nondimensional
form. Note that four of the 14 eigen-
values lie in the right half plane and are
therefore unstable. Since the blades are
self-damped, the centroid of the eigen-
values lies in the left half plane.

Next the rotor is optiwmally mistuned
by numerically finding a wmistuning pattern
which miniwizes the cost function and
satisfies all the constraints. Pigure 11
shows the cost of the optimal mistuning
pattern versus the desired amount of sta~-
bility wargin for the 12, 13, and 14-
bladed cases. Also shown is the cost of
alternate mistuning for the 1l4-bladed
case. Two important pointe are clearly
illustrated. First, although it has been
previously thought that alternate mistun-
ing may be nearly optimal (in the sense
that a small amount of  mistuning 1is
necessary) this is not the case, For a
desired damping ratio of 0.002, alternate
mistuning requires nearly twice the level
of mistuning as optimal mistuning.
Second, it appears that the number of
blades on the rotor 1is unimportant when
optimally mistuning the rotor, and also
that the optimal cost for 12, 13, and 14-
bladed rotor are very similar.
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Mechanisms and Limitations of Mistuning

Some insight into why mistuning is
effective can be gained by examining the
eigenvalues of the tuned and mistuned
rotors in the complex plane, Pigures 10,
12, and 13 show the eigenvalues for the
tuned case and the = 0.0 and the ¢z =
0.002 optimally mistuned cases for the 14-
bladed rotor. As mistuning 1s introduced
the eigenvalues are "pushed" to the left
as much as necessary to satisfy the
congtraints,

The optimal mistuning patterns found
in the optimization procedure for the 14-
bladed rotor are shown in Pigure 14,
Beginning with the ¢ = -0.005, the pattern
of rmistuning is "almost alternate”

mistuning. The odd numbered blades have
little or no change from their nominal
mass. As the stability margin is

increased, the nearly alternate blade mis-
tunings become more and more apparsent.

Upon examination of a number of opti-
mal mistuning patterns such as these, cer-

tain characteristic trends become
apparent. An almost alternate pattern is
evident which serves to reduce the domi-

nant influence of the neighboring blades.
This almost alternate mistuning pattern,
however, 1is& usually broken at one or two
points around the rotor. It is thought
that these breaks disrupt the communica-
tion of longer "wavelength" forces, that
ias, the smaller but nonzero influence co-~-
efficients from non-neighboring blades.
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Pinally, there is a certain fine structure
to the mistuning pattern. The details of
this structure depend on the details of
the minimization, and it is difficult to
predict what this structure will look like
without actually performing the numerical
optimization.

Unfortunately, the strict optimal mis-
tuning pattern 1is sensitive to errors in
implementation, Although the designer may
gpecify a certain mistuning pattern, the
manufacturing process may place 1limits on
the tolerances which can actually be
achieved. Hence, it is necessary to con-
sider the sensitivity of a given mistune
pattern to errors in implementation. For
instance, if one wishes to implement an
optimal mistune pattern on an actual
rotor, the actual mistuning pattern which
is implemented will be given by

gae + e 92
1 M pecified (92)

where ej; is the error in mistuning the
rotor. The stability of this actual pat-

tern may be significantly 1lesa than the
one desired, depending on the errors
introduced.

To investigate this problem, errors

were introduced into the optimally mis-
tuned ld-bladed rotor with a stability
margin of 0.002. The procedure was to
compute the worst case arrangement of the
error and then assess the degradation in

stability due to that case.
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For an RMS scatter of 1 percent in
mass mistuning, it was found that the
stability was reduced from 0.002 to
-0.,00317 (Figures 15 and 16). The opti-
mally mistuned rotor is extremely sensi-
tive to errors in mistuning. ,

Hence we have seen that even though
the optimal mistuning is the best possible
mistuning pattern in one sense, that is,
it requires the lowest level of mistuning
to achieve a desired level of gtability,
it is clearly not practical to implement a
pattern of mistuning which requires vsry
close tolerances on the natural frequen-
cies of the blades. As an alternative,
consider the case of alternate mistuning.
As was shown earlier, this mistune pattern
is not nearly as effective as the optimal
mistuning in terms of required levels of
nistuning. However, the pattern is not as
susceptible to errors in implementation as
the optimal mistuning pattern. The same
sensititivy analysis was applied to an
alternately mistuned rotor with a perfect-
ly mistuned stability margin of 0.00171.
For a 1 percent RMS scatter in wmass
mistuning, the stability margin was re-
duced from 0,00171 to 0,00047 as shown in
Figure 16. Therefore, although alternate
mistuning is not as cost effective as
optimal mistuning, it is clearly much more
robust to errors in implementation.

Some insight into this difference in
sensitivity can be gained by examining the
trends shown in Figure 16. These trends
can be divided into three regions. For
the Firast few percent of mwistuning intro-
duced into the tuned rotor, very little
change {n stability occurs. In fact, it
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can be shown that for the first increment
of mass mistuning of blades with a single
degree of freedom, no change in stability
occurs, Thus, on average, a rotor must
have several percent mistuning before it
begins to exhibit the behavior of a
mistuned rotor.

Beyond the first few percent {in mis-
tuning, the trend enters an approximately
linear region of sensitivity, that s,
linearly increasing stability with {n-
creasing mistuning. Beyond this region,
one moves Into a region of diminishing
returns., Eventually, the asymptotic limit
of stabllity, the centroid of the eigen—
values, is approached and the level of
mistuning required per 1increase in sta-
bility rises sharply.

This idealized trend can be used to
explain the sensitivity of the optimum
mistuning patterns. Figure 9 shows that
the optimum cost curve has a very shallow
slope in the region of ¢ = 0.002. This
implies that a small amount of mistuning,
if introduced correctly, can greatly in-
crease the stability of the rotor. But
for the same reason, small errors in wis-
tuning can cause large decreases in
stability. On the other hand, alternate
mistuning 1is relatively insensitive to
errors in mietuning but is not nearly
optimal. Thus there is a clear design
trade-off between the level of mistuning
and the robustness of the design.
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Summary Comments

In this chapter an attempt has been
made to outline a complete and generalized
formulation for the aeroelastic problem
and its solution. This includes informa-
tion necessary conventions of the aerody-
namic and structural dynamic operators.
The most important lesson to be learned
from this review 18 that in the case of
linear analysis, all of these analyses are
equivalent, and the practicing engineer
should use the one which gives the most
insight into a particular problem.

In addition, a brief review of the
most common trends in stability analysis
was conducted: the destabilizing influ-
ences in cascades, the influence of kine-
matic vS. dynamic bending torsion
coupling, the effects of wmistuning, and
the yet largely unmodellied effects of
three-dimensionality.

Much of what haa been presgsented in
this chapter, except for the treatment of
explicit time dependent motion in a
cascade, exista in fragments distributed
throughout the literature. But, here an
attempt has been made to unite all of
this material in a common formulation, and
reference it to the remaining chapters of
this Manual.

APPENDIX A: SUMMARY OF TRANSFORMATION RELATIONSHIPS

Basic relationshi for single oe_of

freedom per blade):

Structural dynamsics:
(M}{a,} + [X){a,)} = {f,} (A1)

Unsteady aerodynamics:

f - npb 0 2 2 q’ .J(Ut'biﬂu)

(A2)
— Jut

-l J5
Kinemmtics:

@) = )5 } - 5} 2
For blade coordinates:
transform equation 2 using equation 3

(g} + UG, = (1) (A1)

- 1?2y, Jimrta,)
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For travelling wave coordinates:
transform equation 1 using equation 3

~reroneea, } + [E]"[K][E]{;, }- we

il 1)

For standing wode coordinates {sin/cos):
transform eqn. 4 for q, and premulciply by [I’]-1

2P ey :: + [r]"mm[q“‘]

(A6)
= lpb ) [P] [L][P]

For standing wmode coordinates ral):

transform eqn. 4 for q, and premultiply by [¢]T

AR )+ wfoarefz} - an
- 1?0 e, }

Other useful transformation relationships:

(n-n)/z (N-1)72
"{[qeo + qmeo. no + Elq- sin né ] Jot}

{t}’[']

coo .1 %.1%.2%.2" " " |

1.0 °11’11 12'12
[?]'cz'o

cao
cu-xo *c
where ck‘ceuﬂ%nnd sk‘-einﬂk-ﬁ'
N
T N2
(P) [P)=[D]= N2
N2

[4)
OB Rk
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APPENDIX B: FORCE AND NOMENT NOTATION

Force notation usually used with the C' notation

The forces and moments are initially defined
to be acting at the leading edge (see figure 3b),
and the diaplacewents and wake velocities are:

;oo""‘ ! leading edge velocity

ane : angular displacement
309""' : wake velocity at leading edge

The forces and moments acting at the leading
odge are:

By = 7pUe(Cpq g *+ UsCpy &y - Cpy Vo) o™ (B1a)

X, = -pUe’(c“-Eo + UGy & ~ G, ¥o)-e¥*"  (B1D)

If the axis of pitch is shifted to a point nc
behind the leading edge, the coefficients about
this axis (designated by subscript 7n) are derived
by considering the transformation in coordinmtes
and forces:

E'no"“' - Eoo""" + ne—(: < ?l'oo"“t)
&'n.-"" - Eoo-"" F" = ¥,
;n..'lot - ;o.-JM.Jot ﬂ“ =N - ""'Fo

where = 0 at the laading sdge. 1 at the trailing
edge, and A = wc/U. The new cosfficients are:

(cl"q)n = (ch)o
(Sradn = (Srado = IMM(Cpodg
Cody =+ U)o (22)
Caln = Gl ~ MGrgdo
(Geadyy = G = MCpgdo = MG dg + PP(Cre)y
Gy = * G0 = PG

Fn = "U"[(ch)n::"n + UCpy), &,

- (Gpgly¥1-e?" (83a)
V- "‘bz[(cll)n'an * UGy) s,
- (Gl ¥ ?" (B3b)

Force Notation used with the & notation

The forces and moments are assumed to be
acting at the elastic axis (see figure 3a). and
the displacements and wale velocities are,

b = Beed¥® : displacement of the reference axis
a = 3+t : angular displacement

w = wel®t : wake velocity of the reference axis

And the forces and moments are written as:

+= 1pbzvz{¢u‘--g- + 823 z"'-g)-.-'“' (B4a)

:—2 = tpbzuz(fh'—g- + g . 8“-;:}'0"“ {B4b)
By comparison of the two conventions,

F =L

3
n
&

1%

= -jﬂ'i

4 a'n.

t

8"8“3’ 3

(-]
"
¥

and with these conventions:
&t . é‘(cl-'q)n L E‘(oﬁ)n
Lol ':}(cra)n - i!(%)n
Ll 3(%')11 & - 3(%)11




