
Equivalence of the Adjoint-Weighted Monte Carlo 
Perturbation Method and the First Order 

Differential Operator Sampling Method with 
Fission Source Perturbation

Hyung Jin Shim and Chang Hyo Kim

Dept. of Nuclear Engineering, SNU

ANS 2011 Annual Meeting

June 30, 2011

Hollywood, FL



2 SNU Monte Carlo Lab.

McCARD

1. Background & Objectives

2. Derivation of MC Adjoint-Weighted Perturbation Formulations

3. Comparison to Formulations for the First Order Differential Operator Sampling 
Method with the Fission Source Perturbation Method

4. Numerical Results

4.1 Number Density Perturbations for Godiva Problems

4.2 Nuclear Data S/U Analysis for Godiva

5. Conclusions

Contents



3 SNU Monte Carlo Lab.

McCARD

 The Monte Carlo perturbation methods have become a powerful means not only to 
estimate the change of the reactivity in response to a small change of a nuclear 
design parameter but also to perform the sensitivity and uncertainty (S/U) 
calculations of nuclear design parameters with regard to the uncertain nuclear data.

 The traditional MC perturbation methods [1] such as the differential operator 
sampling (DOS) and the correlated sampling have been widely applied for the 
sensitivity calculations. However these methods do not utilize the adjoint flux so 
that the perturbed fission source effect should be taken into account by the fission 
source perturbation (FSP) method [2].

[1] H. Rief, “Generalized Monte Carlo Perturbation Algorithms for Correlated Sampling and a 
Second-Order Taylor Series Approach,” Ann. Nucl. Energy, 11, 455 (1984).

[2] Y. Nagaya, T. Mori, “Impact of Perturbed Fission Source on the Effective Multiplication 
Factor in Monte Carlo Perturbation Calculations,” J. Nucl. Sci. Technol., 42[5], 428 (2005).

 Though Ueki and Hoogenboom [3] have ever investigated an MC perturbation 
analysis with the forward and adjoint solutions, it requires adjoint history 
simulations.

[3] T. Ueki, J. E. Hoogenboom, “Exact Monte Carlo Perturbation Analysis by Forward-
Adjoint Coupling in Radiation Transport Calculations,” J. Comput. Phys., 171, 509 (2001).

Background
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 Recently, there have been significant advances to estimate the adjoint-weighted 
kinetics parameter in the MC forward calculations by utilizing a physical meaning 
of the adjoint flux which can be estimated in the MC forward calculations.

 The MC adjoint flux estimation method using the iterated fission probability (IFP) 
was readily applied for the adjoint-weighted perturbation (AWP) methods [4,5]. 

[4] B. C. Kiedrowski, F. B. Brown, “Adjoint-weighting for critical systems with continuous 
energy Monte Carlo,” Nuclear Criticality Safety Division Topical Meeting on Realism, 
Robustness and the Nuclear Renassance 2009, Richland, WA, Sep. 13 (2009).

[5] H.J. Shim, C.S. Gil, C.H. Kim, “Nuclear Data Sensitivity and Uncertainty Analysis Using 
Adjoint Flux Estimated in Monte Carlo Forward Calculations,” International Conference on 
Nuclear Data for Science and Technology 2010, Jeju Island, Korea, April 26-30 (2010).

 The objectives of this presentation are

• to prove that the first-order DOS method with FSP effect taken into account 
(DOS/FSP method hereafter) is equivalent to the first-order AWP method

• and to demonstrate numerically the equivalence of the first-order DOS/FSP and 
AWP methods through S/U analyses of the Godiva criticality problems.

Objectives
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 To start with, the MC eigenvalue equation for the fission source density (FSD), S, is 
given by

where S satisfies                      where P denotes the state vector of a neutron in the 
six-dimensional phase space, (r, E, W).

 HS in Eq. (1) implies

where                     means the number of first-generation fission neutrons born per 
unit phase space volume about P, due to a parent neutron born at    .

Perturbation Formulation for MC Eigenvalue Cal. (1/3)
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 The perturbed system equation by a change of the input parameter x can be written 
as

 Taking the inner product of both sides of Eq. (3) with a weight function w(r, E, W) 
and solving for the change in the eigenvalue, one can obtain

where the angle bracket notation indicates the integration over the domain of a 
product of two functions and I denotes the identity operator.

 By neglecting products of perturbations in Eq. (6), a first-order estimate for the 
eigenvalue perturbation can be written as
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Perturbation Formulation for MC Eigenvalue Cal. (2/3)
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 Suppose that w is chosen to be the -mode adjoint function f* that obeys

where the adjoint operators are defined by

 By inverting M* in Eq. (10) and introducing the operator H defined by Eq. (2), one 
can obtain

 Because                                                                      by Eq. (10), Eq. (6) becomes

 Because =1/k, Eq. (11) can be rewritten as
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 The fundamental mode adjoint flux f0
* can be obtained by applying the power 

method to Eq. (10).

n is the iteration or generation index and k0 is the fundamental mode eigenvalue. 
f0,n

* is the n-th iterative solution to be obtained with an arbitrary non-zero starting 
distribution function f0,init.

*.

Physical Meaning of f0* (1/2)
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 Because of the definition for H in Eq. (13), the integral notation for Eq. (13) can be 
written as

where                      denotes the number of n-th generation fission neutrons born per 
unit phase space volume about     , due to a parent neutron born at P.

 Then when                     , f0,n
*(P of Eq. (14) can be interpreted as the number of 

fission neutrons produced in the n-th generation due to a unit source neutron located 
at P and normalized to satisfying 

 When n is large enough for the iterative solution to converge, f0
* can be 

approximated by f0,n
*.

Physical Meaning of f0* (2/2) 
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 Insertion of Eq. (15) into the k0 uncertainty equation of Eq. (12) yields

where S0 denotes the fundamental mode fission source distribution.

 Because HS0 =k0S0 and                      , the denominator of Eq. (17) becomes k0.

 Therefore from Eq. (17), k can be written as

Application of f0* to AWP Formulation
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 In the MC power method, S for the next cycle i+1, Si+1 is updated as 

 By the first order DOS method augmented by FSP, the sensitivity of eigenvalue at 
cycle i, ki to the parameter x is calculated by

 And from Eq. (19), the sensitivity of Si to x can be written as

Formulation of First Order DOS/FSP Method (1/4)
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 Using Eq. (22), the successive updates from cycle i-n, where Si-n/x is assumed to 
be zero, yields

 Suppose that the sensitivity calculation is performed after the FSD converges to the 
fundamental mode. In other words, let’s assume that the following conditions are 
met for the active cycle index, i;

k0 and S0 are the fundamental mode eigenvalue and eigenvector of Eq. (1).

Formulation of First Order DOS/FSP Method (2/4)
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 Using the conditions of Eq. (24), Eq. (23) can be expressed as

 Insertion of Eq. (25) into Eq. (21) yields

Formulation of First Order DOS/FSP Method (3/4)
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 Eq. (26) indicates that ki/x is independent of the cycle index i when the FSD is 
converged to S0 and ignore its statistical fluctuations. 

 Noting k=x(ki/x) and H=x(H/x), Eq. (26) can be transformed to

 From the comparison of Eq. (27) with Eq. (18), one can clearly observe that the 
(k0)i estimated by the first-order DOS/FSP method is the same as that by the first-
order AWP method.

Formulation of First Order DOS/FSP Method (4/4)
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 In order to confirm numerically the equivalence of the two first-order MC 
perturbation methods, we have calculated the changes in k due to globally or locally 
induced U-235 density changes in Godiva.

 The Godiva geometry is a bare uranium sphere with a radius of 8.741 cm. The 
original density is 18.74 g/cm3 and the composition is 94.73 wt% U235 and 5.27 wt% 
U238.

U235 Number Density Perturbation for Godiva Problems

Vacuum boundary condition

8.741 cm 6.938 cm

1.803 cm

(a) Uniform perturbation (b) Central perturbation

Perturbed region

(c) Outer perturbation
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Number Density Perturbation of Godiva

(a) Uniform perturbation
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Number Density Perturbation of Godiva

(b) Central perturbation
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Number Density Perturbation of Godiva

(c) Outer perturbation
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Comparison of keff and uncertainties 
due to the cov. in U235 JENDL-3.3 for the GODIVA problem

a) The results by TSUNAMI and SUSD3D were excerpt from the paper of KNS 2008 Spring Mtg. entitled by
“Uncertainty Analysis of keff on the GODIVA Core Using Recently Developed Covariance Data”.

b) The calculations were performed for 1000 active cycles with 10,000 histories per cycle.

Code

Neutronics KENO-V.a ANISN McCARDb)

S/U TSUNAMIa) SUSD3Da) 1st-order 
DOS/FSP

AWP

Energy Group 238 44 Cont.

Covariance Data 238 grp 44 grp 30 grp

Unc.
due to
U-235

(%)

ν, ν 0.15 0.15 0.15 0.15

(n,γ), (n,γ) 0.15 0.17 0.16 0.16

(n,γ), (n,n) 0.07 0.05 0.05 0.05

(n,2n), (n,2n) 0.02 0.01 0.01 0.01

(n,fis), (n,fis) 0.17 0.17 0.17 0.17

(n,fis), (n,n) -0.05 -0.03 -0.04 -0.04

(n,n), (n,n) 0.33 0.32 0.38 0.38

total 0.43 0.43 0.47 0.48
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 We have shown that the first-order AWP method is identical to the first-order DOS 
method with the FSP taken into account by comparing the derived formulations for 
the two methods.

 In order to confirm numerically the equivalence of the two first-order MC 
perturbation methods, we have calculated the changes in k due to globally or locally 
induced U-235 density changes in Godiva and also analyzed contributions of U-235 
cross section uncertainties to the uncertainty of k, sXX(k), of the Godiva by nuclear 
data types.

 We have demonstrated that k’s and sXX(k)’s from the first-order AWP method are 
the same as those from the first-order DOS/FSP method and that sXX(k)’s from by 
the AWP method agree remarkably well with those from the deterministic S/U 
codes.

 This then leads us to conclude that the first-order AWP method is a useful 
alternative to the same order DOS/FSP method.

Conclusions



21 SNU Monte Carlo Lab.

McCARD

Uncertainty Quantification (1/3)

 A nuclear parameter Q can be viewed as a function of input parameters such as 
system geometry, material composition, cross section data, etc. Then Q can be 
expressed as

is the g-th group microscopic cross section of reaction type r of isotope n.

I, Γ , and G represent the total number of isotopes, reaction types, and energy 
groups, respectively.

 Because of the data uncertainties, there can be an infinitely different set of cross 
section inputs to Q. This may result in different Q’s as many as the number of 
input sets. Let’s designate the k-th cross section input set which may be sampled 
from the cross section distribution.
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Uncertainty Quantification (2/3)

 The mean of Q,     , and its variance             can be given by 

 Let’s assume that       is determined by

with          denoting the mean of the cross section which is defined in the same 
way as       in Eq. (A.3).

 From the Taylor series expansion of Eq. (A.2) to the first order of the cross 
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Uncertainty Quantification (3/3)

 The substitution of Eq. (A.6) into Eq. (A.4) results in 

 Introducing the sensitivity coefficient of Q to       ,                defined by 

the relative variance from Eq. (A.7) can be expressed as

where                                               means the relative covariance between         
and          .
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 This conventional perturbation theory for the critical eigenvalue is excerpted from 
Ref. [7].

[7] M. L. Williams, “CRC Handbook of Nuclear Reactors Calculations Volume  III, 
Perturbation Theory for Nuclear Reactor Analysis,” Y. Ronen, Ed., CRC Press, Boca 
Raton, FL, 1986.

 The steady-state Boltzmann transport equation can be written in an operator notation 
as

f is the angular flux and  is the lambda mode eigenvalue defined by 1/k. The net 
loss operator M and the fission production operator F are defined by

t, s, and f are the total, scattering and fission cross-sections, respectively.  is the 
mean number of fission neutrons produced from a fission reaction.  is the energy 
spectrum of fission neutrons.

Benefit of Adjoint Weight Function (1/4)

(1)f  fM F

 ( , )  ( , , ) ( ; , , ) ( , , ),t sE E dE d E E Ef f f            M Ω r r Ω Ω r Ω Ω r Ω

( )
( ) ( , ) ( , , )

4 f

E
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

       F Ω r r Ω
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 If we take the inner product of both sides of Eq. (1) with some arbitrary, nonzero 
weight function w, and solve for , the following expression is obtained

where the angle bracket notation indicates the integration over the domain of a 
product of two functions.

 The equation for a perturbed system by a change of the cross-section x can be 
written as

Benefit of Adjoint Weight Function(2/4)
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 Taking the inner product of both sides of Eq. (B.2) with a weight function w(r, E, 
W) and solving for the change in the eigenvalue, one can obtain

 By neglecting products of perturbations in Eq. (B.5), a first-order estimate for the 
eigenvalue perturbation can be written as

Benefit of Adjoint Weight Function(3/4)
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 Suppose that w is chosen to be the -mode adjoint function f* that obeys

where the adjoint operators are defined by

 Because                                                                           by Eq. (B.7), Eq. (B.6) can 
be reduced to

 From the definition of k, Eq. (B.10) can be rewritten as

Benefit of Adjoint Weight Function (4/4)
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