Soil Mechanics Lecture note #13

1/5

1. Shear strength of sands

○ Critical void ratio (e_c)

The e_c of a soil is the void ratio that exists prior to a (shearing process) in which the (volume) change is zero, $e_c = f(\sigma) \rightarrow$ therefore, not a (material constant)

• Friction angles of sands

[Table 4.1] Friction angles of sands (Sowers and Sowers, 1951)

Shape and Grading	1oose	dense
Rounded, uniform	30°	37°
Rounded, well graded	34°	40°
Angular, uniform	35°	43°
Angular, well graded	39°	45°

[Table 4.2] Friction angles of sands (Terzaghi & Peck, 1967)

Materials	1oose	dense	
Rounded, uniform sand	27,5°	34°	
Angular, well graded sand	33°	45°	
Sandy gravel	35°	50°	
Silty sand	27°~ 33°	30°∼ 35°	
Inorganic silt	27°∼ 30°	30°∼ 34°	

[Fig 4.7] N vs. Φ sand

3/5

2. Shear strength of (saturated) clays

- Strength = f (drainage condition, stress history)

↓

drained/undrained NC/OC

- normally consolidated clay:

the present effective stress = (The max. value to which the clay ever been subjected.)

- Overconsolidated clay:
the present effective stress < (the maximum value experienced.)

- Overconsolidation ratio

- the undrained strength

by (
$$U.U$$
) or ($C.U$) tests

Soil Mechanics

Lecture note #13

4/5

(a) Δσ-ε behavior

(b) Mohr-Coulomb failure envelope

[Fig. 4.11] Drained test results

• Sensitivity of clays

- Sensitivity(s) = $\frac{\textit{undrained shear strengths}(\textit{Cu}) \textit{ in the undisturbed state}}{\textit{Cu in the remoulded state}}$

```
normal, s= ( 1~4~ ) sensitive, s=( 4~8~ ) extra-sensitive, s=( 8~16~ ) quick clay, s=( 16~ )
```

- O Strength in terms of effective stresses
- by (drained test) or C,U test w/ (p.w.p measurements)

[Table 43] Undrained shear strength of clays (÷10	[Table 4.3]	shear strength of clays (÷10	$J=t/m^2$
---	-------------	------------------------------	-----------

State	Undrained shear strength (kN/m²)	
very hard	>150	
hard	100~150	
stiff-hard	75~100	
stiff	50~75	
soft-stiff	40~50	
soft	20~40	
very soft	<20	

O Shear strength in terms of effective stresses:

- NC :
$$\overline{c}=(0)$$

$$= \overline{\Phi}=20 \text{ }^{\circ} 35^{\circ}$$
 - OC : $(0)<\overline{c}<(30 \text{KN/m}^2)$ (the lower $\overline{\Phi}$, the higher PI)

