
'

&

$

%

Lecture 8

Two approaches for string search (given P and T)

◦ (search func)

1. Preprocess P in O(m) time

2. Search T in O(n) time

◦ (index data structure)

1. Preprocess T in O(n) time

2. Search for P in O(m) time

The data structure constructed by the Aho-Corasick algorithm is a

tree, but with edges labeled by symbols (characters), and the

children of a node have distinct labels. It is called a TRIE (derived

from information reTRIEval).

1

'

&

$

%

Suffix Trees

A suffix tree TS is defined on a string S. We put a special symbol

(which is not in the alphabet) at the end of S so that a suffix of

S may not be a prefix of another suffix. Let n = |S#|.

Conceptionally easy definition (but this is not the way we construct

the suffix tree).

1. Build the trie with all the suffixes of S. (the number of nodes is

O(n2))

2. Remove every node which has a single child, and concatenate

the labels. This is called a compacted trie.

Example: ababa#

2

'

&

$

%

• Since # is not in the alphabet, all the suffixes of S are distinct

and each of them is associated with a leaf of TS .

• The number of leaves is n.

• Each internal node has degree at least two.

• The number of internal nodes < n.

• A label is a nonempty substring of S, and it is represented by

the start and end positions of AN occurrence (usually leftmost)

of the substring.

Let L(v) for a node v be the string obtained by concatenating the

labels on the path from the root to v.

3

'

&

$

%

Linear Time Construction

As in the AC algorithm, put suffixes into the suffix tree from

longest to shortest. But we are dealing with a compacted trie, not

a trie.

The suffix tree defined by McCreight [Mc76] has one more piece of

information: Each internal node u such that L(u) = aα, a a

character and α a string, has a suffix link SL(u) pointing to the

node w such that L(w) = α.

The locus of a string α in the suffix tree TS is the node v, if any,

such that L(v) = α.

Define headi to be the longest prefix of S[i..n] which is also a prefix

of S[j..n] for some j < i. The locus of headi always exists.

Lemma 1 If headi−1 = aα for some character a and some

(possibly empty) string α, then α is a prefix of headi.

4

'

&

$

%

At the beginning of stage i, each suffix S[j..n], j < i, is in the tree

and we insert S[i..n] and return the locus of headi at stage i.

Invariant: After stage i, the locus of headi is the only node that

could fail to have a suffix link.

General stage: Let v be the locus of headi−1.

B. x← SL(parent(v)). Let β be the label of edge (parent(v), v).

C. (Construct the suffix link of headi−1 if it does not exist

already.) By Lemma 1, starting from node x, there is a path

that has β as prefix. That path is traversed as follows. Set

β̂ ← β. Let α be the label of the edge from x to its child f such

that the first characters of α and β̂ are equal. If |α| < |β̂|, set

β̂ ← β̂ − α and x← f and repeat the label selection with the

new values of β̂ and x until |α| ≥ |β̂|.

1. If |α| > |β̂|, create an internal node d such that

L(d) = headi−1 − S[i− 1]. Set SL(v)← d. Create a leaf w

5

'

&

$

%

such that L(w) = S[i..n], as a child of d. Stop and return d

as the locus of headi.

2. If |α| = |β̂|, f is the locus of headi−1 − S[i− 1]. Set

SL(v)← f ; y ← f . Go to Step D.

D. (Construct the locus of headi.) By Lemma 1, headi = L(y) · γ,

for some possibly empty string γ. Therefore, we can start the

search from y. The search is guided by the characters of

S[i..n]− L(y) which are scanned one by one from left to right.

When the search falls out of the tree, create an internal node v

such that L(v) = headi, if one does not exist. Create a leaf w

such that L(w) = S[i..n], as a child of v. Return v as the locus

of headi.

6

'

&

$

%

Theorem 1 Given a string S[1..n] = a1a2 · · ·an−1#, the suffix

tree for S can be correctly built in O(n) time.

Proof . correctness: invariant

Time: each stage takes constant time except for Steps C and D.

Step D: The number of characters that must be scanned during

stage i to locate headi is given by |headi| − |headi−1|+ 1. The sum

of such terms, taken over all stages is bounded by n, since

head1 = headn is empty.

Step C: Let resi be S[i..n]−L(x), the suffix of S[i..n] starting from

node x. Notice that for every node f encountered during Step C,

there is a nonempty string α which is contained in resi but not in

resi+1. Therefore, the number of nodes visited during Step C of

stage i is at most the number of nodes from x to the parent of

headi which is ≤ |resi| − |resi+1|+ 1. The total time over all steps

is bounded by 2n, since res1 = n and resn = 1. 2

7

'

&

$

%

Applications of Suffix Tree

String matching (index approach)

1. Compute the suffix tree of T .

2. Search down the suffix tree with P .

3. P is a prefix of L(v) for some node v iff P is a substring of T .

◦ Existence test (leftmost occurrence)

◦ All occurrences: Find all leaves of the subtree rooted at v.

Lowest Common Ancestor

The LCA problem: A tree is given.

1. Preprocess the tree in linear time

2. Query: for any two nodes, find their LCA. The query can be

done in constant time [Harel and Tarjan, Schieber and Vishkin].

8

'

&

$

%

With the LCA preprocessing on a suffix tree, the LCA of two

suffixes (leaves) can be found in constant time.

Back to approximate string matching

Problem: for a pattern position i and text position j, find in

constant time how many matches there are from P [i] and T [j].

Solution:

1. Construct the suffix tree for P#T$.

2. Find the LCA of the suffixes starting at P [i] and T [j].

Therefore, in the k-mismatches and k-differences problems (recall

m ≤ n), we have O(kn + |Σ|n) time.

9

'

&

$

%

Suffix Arrays

Suffix array of T: sorted list of all suffixes of T

Suffix array of ababa#

Pos Suffix

1 6 #

2 5 a#

3 3 aba#

4 1 ababa#

5 4 ba#

6 2 baba#

More space efficient than suffix trees

10

'

&

$

%

suffix tree <----> suffix array

O(n)

Direct construction of suffix arrays

• O(n logn): Manber-Myers, Gusfield

• O(n): Kim-Sim-Park-Park, Ko-Aluru, Karkkainen-Sanders

Pattern search with suffix arrays

• O(m + log n): Manber-Myers

• O(m · |Σ|): Abouelhoda-Kurtz-Ohlebusch

• O(m log |Σ|): Kim-Jeon-Park

11

