
'

&

$

%

Lecture 10

Data Compression

Entropy: Given probability distribution (p1, . . . , pn) of events ei

(symbols or messages), entropy is a measure of quantity of

information. The more likely a message is, the less information it

contains (need less bits to represent it).

The entropy Ei of event ei is − log pi (need − log pi bits to

represent ei), e.g., an event of probability 1/2 needs 1 bit, and an

event of probability 1/4 needs 2 bits.

Example

◦ e1 with prob 1/2 → 0

◦ e2 with prob 1/4 → 10

◦ e3 with prob 1/4 → 11

1

'

&

$

%

The overall entropy is the average of individual entropies

E =
∑

i

piEi

(need −
∑

i
pi log pi bits on average)

Shannon’s fundamental result

The entropy is a lower bound of compression.

Prefix property: no code forms a prefix of any other – a code string

can be decoded unambiguously.

2



'

&

$

%

Huffman Coding

• Given that each symbol in the alphabet must occupy an

integral number of bits in the encoding (i.e., instantaneous

codes in which the encoding of one event can be decoded before

encoding has begun for the next event), Huffman coding

achieves “minimum redundancy” (optimal). Hence, it performs

optimally if all symbol probabilities are powers of 1/2.

• JPEG, MPEG use run-length coding and Huffman coding.

Arithmetic Coding

• A message is represented by an interval of real numbers in [0,1).

• Arithmetic coding uses ⌊− log
2
p⌋ + 2 bits.

3

'

&

$

%

Dictionary Techniques

Approaches to text compression can be divided into two classes:

statistical (symbolwise) and dictionary (parsing). All previous

methods are statistical.

Dictionary coding achieves compression by replacing groups of

consecutive characters (phrases) with indexes into some dictionary.

The dictionary is a list of phrases.

• Static dictionary encoder: the dictionary is fixed, irrespective

of texts.

• Semiadaptive dictionary encoder: generate a dictionary specific

to the text being encoded. A drawback is that the dictionary

must now be stored and transmitted with the compressed text.

• Adaptive dictionary encoder: Ziv-Lempel

4



'

&

$

%

Ziv-Lempel Coding

◦ Idea: replace a string by a reference (pointer) to an earlier

occurrence.

◦ pointer (m, l): l characters starting at position m.

◦ A family of algorithms

LZ77

Sliding window of fixed size N : first N − F characters have already

been encoded and last F is a lookahead buffer.

1. Initially, N − F are spaces and first F of text are in the buffer.

2. Find a longest match with the buffer in the window. The

match may overlap with the buffer. The longest match is coded

into (i, j, a), where i is the offset of the match from the buffer,

j is the length of the match, and a is the first character after

the match in the buffer

5

'

&

$

%

3. The window is shifted j + 1 positions.

N=11, F=4

input: abcabcbacbab..

output: (,0,a)(,0,b)(,0,c)(3,3,b)(4,1,c)(3,2,b)..

LZ78

• Text seen so far is parsed into phrases, where each phrase is the

longest matching phrase seen previously plus one char.

• Each phrase is encoded as an index (or as a pointer (m, l)) to

its prefix plus one char. (The longest match cannot overlap

because we find the match only with phrases in the dictionary.)

• No restriction on how far back a pointer may reach.

6



'

&

$

%

Encoding

1. Find the longest matching phrase.

2. Output (phrase index, next char).

3. Insert new phrase (matching phrase + next char) into

dictionary.

input: a aa b ba baa baaa bab

parse number: 1 2 3 4 5 6 7

output: (0,a)(1,a)(0,b)(3,a)(4,a)(5,a)(4,b)

Decoding

1. Output a new phrase from (phrase index, next char).

2. Insert the new phrase into dictionary.

• Searching can be implemented efficiently by inserting each

phrase into a trie.

7

'

&

$

%

• Using suffix trees, the dictionary of phrases is stored in the

suffix tree. A phrase is denoted by (i, l), where i is a start

position of the phrase and l is the length of the phrase. The

longest matching phrase starting from position i is headi. (The

longest match can overlap with headi by the definition of headi

in McCreight’s construction.)

• Compression is asymptotically optimal as the size of input

increases.

LZW : Unix compress command

• Eliminate the extra char in the output. Output contains

pointers only.

• Initialize the list of phrases to include every character in the

alphabet. The last character of each new phrase is encoded as

the first character of the next phrase.

8



'

&

$

%

input : a a b ab aba aa

output: 0 0 1 3 5 2

phrase num: 0 1 | 2 3 4 5 6

phrase : a b | aa ab ba aba abaa

derivation: 0a 0b 1a 3a 5a

Encoding

1. Find the longest matching phrase.

2. Output “phrase index”.

3. Insert new phrase (matching phrase + next char) into

dictionary.

9

'

&

$

%

Decoding

1. Output current phrase from “phrase index”.

2. Insert a new phrase which is previous phrase + first char of

current phrase into dictionary.

Decoding of 5 is tricky because phrase 5 is not available. but we

know phrase 5 is abx for some x. If we put abx for the decoding of

5, we can see that phrase 5 is aba. So in this special case the last

unknown character of new phrase (phrase 5) is the first character of

previous phrase.

10


