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Solution of Linear Equation Systems

Introduction
System of algebraic equations: result of discretization 
process
Linear or non linear according to the nature of PDELinear or non-linear according to the nature of PDE 
In non-linear case, the discretized equations must be 
solved by an iterative technique, i.e., guessing a 
solution, linearizing the eqns about that solution, 
improving the solution, and repeat.
Algebraic eqn for one CV or grid node in matrix form:Algebraic eqn. for one CV or grid node in matrix form: 
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Direct Methods – Gauss Elimination
Basic method: systematic reduction of large systems of 
equations to smaller ones

Direct Methods – Gauss Elimination
Technique for eliminating A21, i.e., replacing it with zero.

Multiply the 1st row by A21/A11

Subtract it from the 2nd row
All of the elements in the 2nd row are modified.
2nd element of the forcing vector on RHS is modified.
The other elements of the 1st column are treated similarly.
By systematically proceeding down, all of the elements below A11 are 
eliminated.
When this process is complete, none of the eqns 2, 3, …, n contain φ1.
They are a set of n-1 eqns for φ φ φThey are a set of n-1 eqns for φ1, φ2,…  φn.
The same procedure is then applied to this smaller set of eqns, i.e., all 
of the elements below A22 in the 2nd column are eliminated.
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Gauss Elimination – Cont.
After carrying out this for columns 1,2,3, …, n-1, the original 
matrix is replaced by an upper triangular one.

It is efficient to store the modified elements in place of the 
original ones, as the original elements will never be needed 
again. 
Up to this point the algorithm is called forward eliminationUp to this point, the algorithm is called forward elimination.
Note that the RHS of the eqn, Qi, are also modified in this 
process.

Gauss Elimination – Cont.
The last eqn contains only one variable, φn

Proceeding upward, the i-th eqn yields φi – back substitutiong p , q y φi

For large n, the number of operations required to solve a linear 
system of n eqns by Gauss elimination is proportional to n3/3. 

Expensive
F l h G li i i iFor large systems that are not sparse, Gauss elimination is 
susceptible to accumulation of errors.
Gauss elimination does not vectorize or parallelize well and is 
rarely used without modification in CFD problems.
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Direct Methods – LU Decomposition
A variation on Gauss elimination

Any matrix A can be factored into the product of lower (L) 
and upper (U) triangular matrices:pp ( ) g

Forward elimination can be carried out in a more formal 
manner by multiplying A by a lower triangular matrix. 
Requirement: the diagonal elements of L, Lii, all be unity. 

LU Decomposition – Cont.
The factorization is easily constructed.

U is precisely the one produced by the forward phase of Gauss 
elimination.
The elements of L are the multiplicative factors (Aji/Aii) used 
in the elimination process.
This allows the factorization to be constructed by a minor 
modification of Gauss elimination.
The elements of L and U can be stored where the elements of 
A wereA were.
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LU Decomposition – Cont.
The solution of Eq. (5.1) in two stages:

Once Eq. (5.8) has been solved for Y, Eq. (5.7) can be solved 
for φ.

The advantage of LU factorization over Gauss 
elimination is that the factorization can be performed 
without knowing the vector Q.

Direct Methods – Tridiagonal Systems
When 1D ODE eqns are finite differenced with CDS 
approximation, the resulting algebraic eqns have a 
simple structure.simple structure.

Tridiagonal matrix: non-zero terms only on main diagonal (AP) 
and the diagonals immediately above and below it (AE and 
AW).  The elements are best stored as 3 nx1 arrays.
Gauss elimination is easy: only one element needs to be 
li i t d f h d i th f d li i tieliminated from each row during the forward elimination.
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Tridiagonal Systems – Cont.
The forcing term is also modified:

Thomas algorithm or Tridiagonal matrix algorithm (TDMA).
The number of operations is proportional to n.

Direct Methods – Cyclic Reduction
Matrix is not only tridiagonal but all of the elements on 
each diagonal are identical. Cyclic reduction.

Suppose that in Eq (5 9) are independent of iSuppose that in Eq. (5.9),                          are independent of i.
For even i, multiply row i-1 by AW/AP and subtract it from 
row i, then multiplay row i+1 by AE/AP and subtract it from 
row i. Eliminates the elements to the immediate left and 
right of the main diagonal in the even numbered rows, but 
replaces the zero element 2 columns to the left by                
and the zero element 2 columns to the right by . Theand the zero element 2 columns to the right by               .  The 
diagonal element becomes                          .
Because the elements in every even row are the same, the 
calculation of the new elements needs to be done only once.
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Cyclic Reduction – Cont.
Cost of this method is proportional to log2n.
Cyclic reduction provides the basis for methods of 
solving elliptic eqns such as Laplace and Poisson eqnssolving elliptic eqns such as Laplace and Poisson eqns 
directly, i.e., non-iteratively.

Iterative Methods – Basic Concept
Any system of eqns can be solved by Gauss elimination 
or LU decomposition.
The triangular factors of sparse matrices are not sparseThe triangular factors of sparse matrices are not sparse, 
so the cost of these methods is quite high.
The discretization error is usually much larger than the 
accuracy of the computer arithmetic, so there is no 
reason to solve the system that accurately.
Solution to somewhat more accuracy than that of theSolution to somewhat more accuracy than that of the 
discretization scheme suffices.

Why iterative methods?
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Basic Concept – Cont.
In an iterative method, one guesses a solution, and uses 
the eqn to systematically improve it -> cheaper than 
direct methods.direct methods.

Consider Eq. (5.1). After n iterations, we have an approximate 
solution φn which does not satisfy these eqns exactly.  Instead 
there is a non-zero residual ρn: 

Subtract this from Eq. (5.1).  Definition of iteration error

The purpose of the iteration procedure is to drive the residuals 
to zero, and in the process ε also becomes zero.

( ) ( )n nA Q Qφ φ ρ− = − −

Basic Concept – Cont.
Consider a general iterative scheme for a linear system

At convergence sinceAt convergence, since

or more generally 

where P is a non-singular pre-conditioning matrix

( ) 1n n n nA M N Qφ ρ φ φ++ = − =
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Basic Concept – Cont.
An alternative version

Subtract          from Eq. (5.16) 

Where the correction 
For an iterative method to be effective, solving Eq. 
(5.16) must be cheap and the method must converge 
rapidly.

A is sparse N is sparse is simple, i.e., Nφ
computation is easy.computation is easy.
M must be easily inverted, i.e., diagonal, tridiagonal, 
triangular, …, i.e., the solution of system is easy.
For rapid convergence, M should be a good approximation to 
A, making Nφ small.

Iterative Methods - Convergence
What determines the convergence rate and how to 
improve it?

Because at convergence the converged solutionBecause                       at convergence, the converged solution 
obeys 

Subtracting this from Eq. (5.16) and using Eq. (5.14)

The iterative method converges if  
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Convergence – Cont.
Now that                       , let’s consider the eigenvalues     and 
eigenvectors      of the iteration matrix    

where K is # of eqns (grid points).
Now assume that the eigenvectors form the vector space if all 
n-components vectors, then the initial error may be expressed

h iwhere ak is a constant.
Then the iterative procedure Eq. (5.22) yields

Convergence – Cont.
By induction    

For       to become zero when n is large, the necessary and 
sufficient condition: all of the eigenvalues < 1.
The spectral radius, i.e., the largest eigenvalue, must be less 
than one.
In fact, after some iterations, the terms with small eigenvalues 
in Eq (5 26) become very small and only the terms with thein Eq. (5.26) become very small and only the terms with the 
largest eigenvalue remains:



11

Convergence – Cont.
If convergence is defined as the reduction of the iteration error 
below some tolerance δ,

An expression for the required # of iterations    

Simple example: case of a single equation

W h i i h dWe use the iteration method

Then the error obeys, as Eq. (5.22) 

Convergence – Cont.
The error is reduced quickly if n/m is small, i.e.,  
The more closely M approximates A, the more rapid the 
convergence.
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Iterative Methods – Some Basic Methods
Jacobi method 

Simplest - M is a diagonal matrix whose elements are the 
diagonal elements of Ag

Requires (cell #)2 operations in 1 direction.

Gauss-Seidel method
M is the lower triangular portion of A

A special case of the SOR method

Some Basic Methods – Cont.
Successive over-relaxation (SOR) method 

Accelerated version of GS method

ω is the over-relaxation factor  
HW #6
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Iterative Methods – Incomplete LU Decomposition

Use an approximate LU factorization of A as the 
iteration matrix M

where L and U are both sparse and N is small. 
Strongly implicit procedure (SIP)

For 5-point computational molecule

L and U matrices have non-zero elements only on diagonals 
on which A has non-zero elements. 
The product of these 2 matrices produce extra 2 diagonals on 

Incomplete LU Decomposition – Cont.

the nodes NW and SE.
For matrices below 
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Incomplete LU Decomposition – Cont.

Note that l is the 1-D storage location for grid indices (i, j)
Select L and U, such that M is as good an approximation to A
as possible. 

Consider the vector Mφ

Incomplete LU Decomposition – Cont.
Stone’s suggestion for acceleration

N must contain the 2 extra diagonals and we want to choose 
the elements on the remaining diagonals so that 

In other words, Eq. (5.38) reduces to 

h i iwhere                      are approximations to   
Stone’s idea Solution should be smooth, because elliptic 
equation & α < 1 for stability reasons
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Substitute Eq. (5.40) into Eq. (5.39), then the result is equated 
to Eq. (5.38) Obtain elements of N as linear combinations 
of MNW and MSE.

Incomplete LU Decomposition – Cont.

The elements of M, Eq. (5.36), can now be set equal to the 
sum of elements of A and N.

A common method of solving elliptic problems
Add a term containing the 1st time derivative to the equation
Solve the resulting parabolic problem until steady state

Iterative Methods – ADI and Other Splitting Methods

Solve the resulting parabolic problem until steady state
For stability, methods implicit in time is required for 
parabolic equations Solution of elliptic problem at 
each time step

Cost can be reduced by using the alternating direction method 
(ADI)
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Example: 2D Laplace eqn
Add a time derivative convert it to 2D heat equation

ADI & Other Splitting Methods – Cont.

Discretize using the trapezoid rule (Crank-Nicolson) in time 
and central difference in space

wherewhere

Rearranging Eq. (5.47), at time step n+1

ADI & Other Splitting Methods – Cont.

As                                 the last term is proportional to            
for small       .  Since the FD approximation is of 2nd order, for 

ll h l i ll d h di i ismall      , the last term is small compared to the discretizaion 
error and may be neglected.
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The remaining eqn can be factored into 2 simpler eqns

ADI & Other Splitting Methods – Cont.

Each is a set of tridiagonal eqns and solved with TDMA No 
iteration and much cheaper than solving Eq. (5.47)
Either Eq. (5.49) or (5.50) is 1st order accurate and 
conditionally stable, but the combined method is 2nd order 
accurate and unconditionally stable.
Th f il f th d b d th id littiThe family of methods based on these ideas: splitting or 
approximate factorization 
Neglect of 3rd order term (essential to the factorization) is 
justified only when the time step is small (usually true for 
pressure or pressure correction equation in CFD).

Basis of the method: additive decomposition of the matrix

where H: horizontal, i.e., terms contributed by 2nd derivative 
r t and V

ADI & Other Splitting Methods – Cont.

w.r.t. x and V
Consider additive LU decomposition – different from the 
multiplicative LU decomposition

Eqs. (5.49) & (5.50)

Each of these steps is essentially a GS iteration.
Important advantage: may be applied to problems on 
unstructured grids as well
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Non-linear solvers
Newton-like methods: converge quickly if an accurate 
estimate of the solution is available

Iterative Methods – Conjugate Gradient Methods

Global methods: guarantee to find the solution, but not very 
fast
Combination: global initially then Newton-like

Many global methods are descent methods – begin by 
converting the original eqn system into a minimization 
problem.

For positive definite (i.e., symmetric with positive eigenvalues, 
but not the usual case in CFD) matrices, solving the eqn 
system (5.1) is equivalent to finding the minimum of 

Conjugate Gradient Methods – Cont.

Set the 
derivative 

Steepest descents (F considered a surface)

Oldest & best known method
Guaranteed to converge, but often very 
slowly

of F or 
(eqn)2 to 
zero.

Conjugate gradient methods
New search direction is as different from the old ones as possible
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In 2D, find values of α1 and α2 in

which minimize F, i.e., we try to minimize F in the p1-p2 plane.

Conjugate Gradient Methods – Cont.

, , y p p p
In other words, minimize w.r.t. p1 and p2 individually provided 
that the two directions are conjugate

The vectors p1 and p2 are said to be conjugate w.r.t. matrix A.

Pre-conditioning – improve the conjugate gradient 
method

Same solution with a smaller condition number 

Pre-multiply the eqn by another matrix

The conjugate gradient method is applied to the modified 

Conjugate Gradient Methods – Cont.

j g g pp
problem (5.58).
Algorithm

Auxiliary vector

Parameters
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This algorithm involves solving a system of linear eqns at the 
1st time step.  M = C-1 where C is the pre-conditioning matrix.
If M = LU where L and U are the factors used in Stone’s 

Conjugate Gradient Methods – Cont.

SIP method, faster convergence is obtained.

The conjugate gradient method is applicable only to 
symmetric systems.

To apply the method to eqn systems that are not symmetric, 

Iterative Methods – Biconjugate Gradients and CGSTAB

convert an asymmetric problem to a symmetric one.
Simplest way:

When the pre-conditioned conjugate gradient method is 
applied Biconjugate gradients
It i l t t i h ff t it ti thIt requires almost twice as much effort per iteration as the 
standard conjugate gradient method, but converges in about 
the same number of iterations.
Other variants…
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Basis
Iterative method’s rate of convergence depends on the 
eigenvalues of the iteration matrix associated with the method. 

Iterative Methods – Multigrid Methods

g
The eigenvalues with largest magnitude (spectral radius) 
determines how rapidly the solution is reached.
The eigenvector associated with this eigenvalue determines 
the spatial distribution of the iteration error and varies 
considerably from method to method.
The iteration error and residual after nth iteration areThe iteration error      and residual       after nth iteration are 
related by 

If the error is smooth, the update can be computed on a coarser 
grid.
On a grid twice as coarse as the original one in 2D, the 
iterations cost ¼ as much

Multigrid Methods – Cont.

iterations cost ¼ as much.
Iterative methods converge much faster on coarser grids.

Much of the work can be done on a coarser grid – we 
need to define

Relationship between the two grids
FD operator on the coarse grid
Smoothing (restricting) method for the residual from the fine 
to the coarse grid
Interpolating (prolonging) method for the update or correction 
from the coarse to the fine grid
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Example

Multigrid Methods – Cont.

After n iterations, approximate solution 

Subtracting this from Eq. (5.61)

Multigrid Methods – Cont.

Add ½ of Eq. (5.63) with indices i-1 and i+1 to the full eqn 
with index i

Using the relationship between the two grids, 



23

The simplest prolongation or interpolation of a quantity from 
the coarse to the fine grid is linear interpolation.
A 2-grid iterative method

Multigrid Methods – Cont.

Full multigrid (FMG) method – for corrections
Full approximation scheme (FAS) – for solutions

Most fluid dynamics problems require solution of 
coupled systems of eqn – dominant variable of each eqn 
occurs in some of the other eqns

Coupled Equations

occurs in some of the other eqns
All variables are solved for simultaneously
Each eqn is solved for its dominant variable, treating the other 
variables as known

Simultaneous solution
All eqns are considered part of a single system
Iterative solution techniques for coupled systems are 
generalizations of methods for single eqns
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Sequential solution
Treat each eqn as if it has only a single unknown, temporarily 
treating the other variables as known, using the best currently 

Coupled Equations – Cont.

g , g y
available values for them 
Since some terms (coeffs and source terms) change as the 
computation proceeds, it is inefficient to solve the eqns 
accurately at each iteration.  Thus iterative solvers are 
preferred.  Inner iteration: Iterations performed on each 
eqnq
To obtain a solution which satisfies all of the eqns, the coeff 
matrices and source vector must be updated after each cycle 

Outer iteration

Under-Relaxation
On the nth outer iteration

Coupled Equations – Cont.

Allowing φ to change as Eq. (5.67) requires could cause 
instability in the early outer iterations

Replacing          by 

Allowing φ to change only a fraction 
αφ of the would-be difference

leads to Modified main diagonal Modified source vector 
component
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Under-Relaxation – Cont.
Positive effect, since the diagonal dominance of A is increased, 
i.e.,      is larger than AP

Coupled Equations – Cont.

, g P

More efficient than explicit application of Eq. (5.68)
Optimum under-relaxation – problem dependent
Start with small and increase towards unity as convergence is 
approached
Under-relaxation may be applied not only to dependent 

i bl b t l t i di id l t h th fl idvariables, but also to individual terms when the fluid 
properties depend on the solution and need be updated

2 types
Newton-like: much faster when a good estimate if available
Global: guaranteed not to diverge

Non-Linear Equations and Solutions

Trade-off between speed and security
Newton-like techniques

Linearize the function about an estimated value of x using

Setting f(x) equal to zero provides a new estimate 

Continue until the change in               is small
Equivalent to approximating the f(x) curve by its tangent at xk
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Newton-like techniques – Cont.

Use multi-variable Taylor series

Non-Linear Equations – Cont.

Use multi variable Taylor series

When this is set to zero set of linear algebraic eqns
Matrix of the system Jacobian of the system: set of partial y y p
derivatives

Newton-like techniques – Cont.
The system of eqns is 

Non-Linear Equations – Cont.

To be effective, the Jacobian has to be evaluated at each 
iteration 2 difficulties

There are n2 elements of the Jacobian and their evaluation becomes the 
most expensive part of the method.
Direct evaluating method for the Jacobian may not exist.
The cost of generating the Jacobian and solving the system by Gauss 
elimination is so high that the overall cost is greater than that of other 
iterative methods.
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Other techniques
For the sequential decoupled method, the non-linear terms are 
usually linearized using Picard iteration approach. 

Non-Linear Equations – Cont.

y g pp
Non-linear convective term for the ui momentum component

Source term is decomposed into 2 parts

b0 is absorbed into RHS, while b1 contributes to A.

Keep the computational molecule as small as possible 
storage requirements and linear eqn solution effort

Usually nearest neighbors of P are kept but not accurate

Deferred Correction Approaches

Usually nearest neighbors of P are kept, but not accurate 
enough

Approach 1
Leave only the terms containing nearest neighbors on LHS 
and bring all other to RHS (evaluated using values from 
previous iteration) Strong under-relaxation is required to 

t diprevent divergence
Slow convergence
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Approach 2
Compute the terms approximated with a high-order 
approximation explicitly, and put them on RHS

Deferred Correction Approaches – Cont.

pp p y, p
Take simpler approximation to these terms, and put it on both 
LHS (with unknown variable values) and RHS (computing it 
explicitly using existing values)
RHS is now the difference between two, and once converged, 
the low order approximations terms drop out
Used when treating higher order approximations grid nonUsed when treating higher-order approximations, grid non-
orthogonality, and corrections needed to avoid undesired 
effects (oscillations).

Approach 2 – Cont.
Pade scheme in FD

Deferred Correction Approaches – Cont.

Higher-order flux approximations in FV

Although deferred correction increases the computation 
time per iteration relative to that for a pure low-order 

corrections

scheme, the additional effort is much smaller than that 
needed to treat the entire higher-order approximation 
implicitly.
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Important to know when to quit
Common procedure: based on the difference between 2 
successive iterates, stop when this difference is less than a pre-

Convergence Criteria and Iteration Errors

, p p
selected value
However the difference may be small when the error is not 
small proper normalization is essential
From Eqs. (5.14) and (5.27)

The largest eigenvalue or spectral radius,     , can be estimated 

By rearranging Eq. (5.83), iteration error is estimated

Convergence Criteria and Iteration Errors

( ) 1
1 1

nn aε λ ψ∼

This error estimate can be computed from the 2 successive 
iterates of the solution <- can be quite complex
A compromise – Use the reduction of the residual as a 
stopping criterion Iteration is stopped when the residual 
norm has been reduced to some fraction of its original size.
The iteration error is related to the residual via Eq. (5.15)
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Experience shows that inner iterations can be stopped when 
the residual has fallen by 1 - 2 orders of magnitude
Outer iterations should not be stopped before the residual has 

Convergence Criteria and Iteration Errors

been reduced by 3 – 5 orders of magnitude.
The convergence criterion should be more stringent on refined 
grids, because the discretization errors are smaller on them 
than on coarse grids.

Examples
Read through!


