Current Status of Nuclear Fusion Development Focusing on the Tokamak Concept

Yong-Su Na

September, 2008

What is nuclear fusion?

0.000

= mc

Nuclear Fusion Reaction

Nuclear Fusion Reaction

Origin of the Star Energy

Origin of the Star Energy

Thermonuclear fusion

Utilisation of the Fusion Energy

A Mark-17 Hydrogen bomb at the National Atomic Museum

Peaceful use of the fusion energy?

Build a Sun on the Earth

How to confine the hot sun?

0.000

= mc

Gravitational Confinement

Inertial Confinement

Inward transported thermal energy

Fusion fuel microcapsule (microballoon)

Blowoff

Laser beams or laser-produced x rays rapidly heat the surface of the fusion target, forming a surrounding plasma envelope.

Fuel is compressed by the rocketlike blowoff of the hot surface material.

During the final part of the capsule implosion, the fuel core reaches 20 times the density of lead and ignites at 100,000,000°C.

Thermonuclear burn spreads rapidly through the compressed fuel, yielding many times the input energy.

Spiderman II

Magnetic Confinement

Imitation of the Sun on Earth

Plasma – The 4th State of Matter

Plasma – The 4th State of Matter

lons and electrons are separated.

Magnetic Confinement

Magnetic Confinement

Mirror Machine

old Hanbit Device in NFRI

ION

23

 $R_0 = 1.8 \text{ m}, a = 0.5 \text{ m} \text{ in KSTAR}$

Plasma needs to be confined

Applying toroidal magnetic field

3.5T in KSTAR

Applying toroidal magnetic field

3.5T in KSTAR

33

Poloidal field should be applied Drive the plasma current !

Central Solenoid (CS) as a primary circuit

$$v = -\frac{d}{dt} \int_{S} B \cdot ds$$

Faraday's law

Tokamak

Toroidalnaja kamera magnitnaja katushka (Toroidal chamber magnetic coil)

Tokamak

JET (Joint European Torus): $R_0 = 3 \text{ m}$, a = 0.9 m, 1983-today

Tokamak

JET (Joint European Torus): $R_0 = 3 \text{ m}$, a = 0.9 m, 1983-today

KSTAR (Korea Superconducting Tokamak Advanced Research): R_0 =1.8m, a=0.5m, 2008-today

Fusion Power Plant System

Blanket

Blanket Functions:

A. Power Extraction

- Convert kinetic energy of neutrons and secondary gamma rays into heat
- Absorb plasma radiation on the first wall
- Extract the heat (at high temperature, for energy conversion)

B. Tritium Breeding

- Tritium breeding, extraction, and control
- Must have lithium in some form for tritium breeding

C. Physical Boundary for the Plasma (First wall)

- Physical boundary surrounding the plasma, inside the vacuum vessel
- Provide access for plasma heating, fueling
- Must be compatible with plasma operation
- Innovative blanket concepts can improve plasma stability and confinement

D. Radiation Shielding of the Vacuum Vessel

Fusion Power Plant System

How to heat the plasma?

0.000

= mc

Plasma Heating – Neutral Beam Injection (NBI)

53

Plasma Heating – Wave (ICRH, ECRH, LHH)

Plasma Heating – Wave (ICRH, ECRH, LHH)

What is the current status?

0.000

= mc

Fusion Performance

Status of the Tokamak Research

Status of the Tokamak Research

• Progress in fusion can be compared with the development of computer chips and particle physics accelerator energy.

- Present machines produce significant fusion power:
- TFTR (USA) 10 MW (1994) - JET (EU) 16 MW (Q=0.7) (1997)

What are the critical issues?

0.000

= ma

How to increase the fusion power?

= mc

Stabilisation of Plasma Turbulence

Turbulence stabilisation → Increase of plasma pressure
→ High fusion power

Stabilisation of Plasma Turbulence

Gyrokinetic Simulations of Plasma Microinstabilities

simulation by

Zhihong Lin et al.

Science 281, 1835 (1998)

Suppression of Plasma Instabilities

Suppression of Neoclassical Tearing Mode by ECCD ((AEA))

R -

Edge Region Instability and Disruption

Edge Localised Mode

Disruption

Suppression of ELMs

Suppression of ELMs by helical field on DIII-D

Why high radiation required? What are material issues?

Plasma–Wall interactions

• High heat flux to the surrounding materials

Radiation Induced by Impurity Seeding

• Heat flux to materials reduced by radiation emission

71

Radioactivation of Materials

• Neutron impacts on materials
What is the future of fusion?

0000

= mc

Status of the Tokamak Research

Status of the Tokamak Research

• Progress in fusion can be compared with the development of computer chips and particle physics accelerator energy.

- Present machines produce significant fusion power:
- TFTR (USA) 10 MW (1994) - JET (EU) 16 MW (Q=0.7) (1997)

ITER Project

- International Thermonuclear Experimental Reactor
 - "the way" in Latin
 - the essential next step in the development of fusion

- Objective To demonstrate the scientific and technological feasibility of fusion power.
 - The world's biggest international research project

Fusion Energy Development

• The Fast Track Approach

KSTAR Project

- Korea Superconducting Tokamak Advanced Research
 superconducting tokamak using ITER-relevant magnets
 - capability of reactor-relevant plasma performances

 Objective - To integrate optimised plasma performance and continuous operation as a step toward an attractive tokamak fusion reactor

When he was asked how long it would take to build the first fusion power plant, the Soviet physicist Lev Artsimovich – one of the pioneers of tokamak research – replied that "fusion will be there when society needs it." That time is fast approaching, and with the construction of ITER finally about to start, efforts are now gearing up for the longer –term prospect of fusion energy.

- "Fusion: the way ahead, Physics World March 2006

"The entire cost of the fusion development programme is equal to only a week of spending in the international energy markets."

- I. Cook, IAEA 2005