

NANO FABRICATION LABORATORY

Crystal Structure

Lattice ---→ Crystal

lattice points occupied by atoms, ions, or molecules

lattice points- all identical, collection of objects- must be identical

Crystals are solid chemical substance with a three-dimensional periodic array of atoms, ions, or molecules. This array is a called a **crystal structure**.

1. Simple metallic structure;

FCC, HCP and BCC structure Stacking sequence, [(110) projection structure] Interstitial sites

2. Complicate structure; Ionic and covalent structure

Chemical bonding :

Covalent bonding

Metallic bonding

Closed Packed Structures :

Stacking sequence

ABCABCABCABC (FCC)

ABABABABABAB (HCP)

APF \rightarrow 74 %

Unit cell of HCP :

• Materials : Mg, Ti, Co, Zn, Zr,

Unit cell of FCC :

(110) plane projection of FCC :

 \rightarrow Stacking sequence of FCC; <u>A B C</u> A B C A B C

Unit cell of BCC :

• Materials : Cr, Fe, Nb, Mo, Ta, W,

(110) plane projection of BCC :

 \rightarrow Stacking sequence of BCC; <u>A B C D E F</u> A B C D E F

Interstitial Sites (Interstices)

Coordination #	Cation-Anion radius ration
2	< 0.155
3	0.155 - 0. 225
4	0. 225 - 0.414
6	0. 414 - 0. 732
8	0. 732 - 1. 0

Geometry

Interstitial Sites ; FCC structure

Octahedral sites ; 4

Tetrahedral sites; 8

Interstitial Sites; HCP

Tetrahedral sites ; 4

$$(0,0,\frac{3}{8})$$
 $(0,0,\frac{5}{8})$ $(\frac{1}{3},\frac{2}{3},\frac{1}{8})$ $(\frac{1}{3},\frac{2}{3},\frac{7}{8})$

Interstitial Sites; HCP

Octahedral sites ; 2

$$(\frac{2}{3}, \frac{1}{3}, \frac{1}{4}) \ (\frac{2}{3}, \frac{1}{3}, \frac{3}{4})$$

Interstitial Sites; BCC

3 octa + 3 octa = 6 octa

Interstitial Sites; BCC

4/2 tetra x 6 = 12 tetra

Interstitial Sites; BCC

Octahedral sites ;

$$\frac{r_i}{r}\Big|_{octsmall} = 0.155, \qquad \frac{r_i}{r}\Big|_{inplane} = 0.63$$

Tetrahedral sites ;

$$\frac{\left. \frac{r_i}{r} \right|_{tet}}{r} = 0.29$$

FCC	BCC
Octa 4 (0.414)	6 (0.155, 0.63)
Tetra 8 (0.225)	12 (0.29)

Phase transformation

• Phase trans. From BCC to HCP ; somewhat deformation

1. CsCl structure

1. CsCl structure

(110) projection [112] Α F Ε D С

- Over 400 phases belong to this type
- Not a BCC structure
- P₂, P_{m3m}
- Stacking sequence : <u>A B C D E F</u> A B C E D F ...

2. NaCl structure (rock-salt structure)

2. NaCl structure (rock-salt structure)

3. NiAs structure

3. NiAs structure

Stacking sequence :

 $C \rightarrow \gamma$; Octahedral position

Distance between 2 cations :

internal compression effect between

- 2 metallic atoms
- → c/a ratio is generally smaller than that of HCP

4. Zinc Blende structure (Sphalerite)

4. Zinc Blende structure (Sphalerite)

5. Wurzite structure

of tetrahedral sites : 4

Upright 2 ; (2/3,1/3,1/8) (0,0,5/8) or Inverted 2 ; (2/3,1/3,7/8) (0,0,3/8)

5. Wurzite structure

 $\left.\begin{array}{c}
\mathbf{A} \gamma \ \mathbf{B} \\
\mathbf{B} \alpha \ \mathbf{C} \\
\mathbf{C} \beta \ \mathbf{A}
\end{array}\right\}$ Octahedral coordination

 $\left.\begin{array}{c}
\mathbf{A} & \alpha & \mathbf{B} \\
\mathbf{B} & \beta & \mathbf{C} \\
\mathbf{C} & \gamma & \mathbf{A}
\end{array}\right\}$ Tetrahedral coordination

6. Diamond structure

Host atom

- FCC array &
- ¹/₂ tetrahedral sites

Similar to Zinc blende except that the same element occupies tetrahedral sites

6. Diamond structure

Stacking sequence : <u>AABBCC</u> AABBCC...

6. Diamond structure

Coordination number : 4 Atomic Packing Factor : 34 % \rightarrow ½ of BCC (why?)

7. Cal₂ structure

- HCP array of I
- Alternating layers of

octahedral sites ; Ca

8. CdCl₂ structure

- Alternating Cd layers in

octahedral position ; Ca

Stacking sequence : $A \gamma B \alpha C \beta A \gamma B \alpha C \beta A \gamma B \alpha C \beta A \gamma \beta \alpha C$ iimissingmissingmissingmissingmissingmissingmissingmissing $M \gamma B C \beta A B \alpha C A \gamma B C \beta A B \alpha C$

9. Al₂O₃ (sapphire structure)

10. CaF₂ (Calcium difluoride) structure

Αβα Βγβ C αγΑβα Βγβ C αγ