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Lattice Basis Space group Positions of the atoms
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P 42/ mnm i‘;‘, 4/mmm Tetragonal

No. 136 P 42/m 21/” 2/m Patterson symmetry P4/mmm
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_(D+ -(M+
G Toia
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Origin at centre (mmm) at 2/m12/m
Asymmetric unit 0<x<}; 0<y<4; 0<5z<4; x<y

Symmetry operations

(1) 1 (2) 2 0,0,z (3) 4*(0,0,1) 0,3,z (4) 4-(0,0,3) 4,0,z
(5) 2(0,4,0) +,y,i 6) 2(3,0,0) x,i.4 (7 2 x,x0 8) 2 x,%0
1 0,00 (10) m x,y,0 (11) 4* 4,0,z; 4,02 (12) 4 0,4,z;0,4,4

(13) n(4,0,}) =x,1,z (14) n(0,1,3) t,y.2 (15) m x,%,z (16) m x,x,z



Generators selected (1); (1,0,0); ¢(0,1,0); ¢(0,0,1); (2); 3); (5; (9
Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff lerter,
Site symmetry
General:
16 k 1 ()xy,z (2) %,¥,2 (3) i x+d,z+4  (4) y+i,x+4,2+3 Okl: k+1=2n
(5) X+4,y+4,2+4%  (6) x+4,5+4,2+%  (7) y,x,2 (8) ¥,%,2 00l: ! =2n
9) %,5,2 (10) x,y,7 (11) y+4,5+4,2+4 (12) J+4,x+4,2++  h0O: h=2n
(13) x+4,5+4,z+44 (14) x+4,y+4,z+4 (15) 7,%.2 (16) y,x,z
Special: as above, plus
8 J ..m X,X,2 X,X,2 I+i,x+iz+%+  x+4 x+4.z+4  no extra conditions
I+ix+i,7+F x+i,5+4,7+%4 0 x,x,Z X%,z
8 I m x,y,0 x,7,0 F+i,x+44  y+i,E+id no extra conditions
T+i,y+4,4  x+i,5+44 y,x,0 7,%,0
8 h 2 0,4,z 0,4,z+% 4,0,7+4 4,0, hkl . h+k,1 =2n
0,4,z 0,4,7+% 14,0,z+% 1,0,z
4 ¢ m.2m x %0 x,x0 x+ix+id  F+d E+i.4 no extra conditions
4 f m.2m xx,0 xx0 x+ix+44  x+i,5+4.4 no extra conditions
4 e 2.mm 0,0,z 44,2+ 1,4,7+4 00,7 hkl : h+k+1=2n
4 d 4 0.4F 041 104 103 nkl : h+k,l =2n
4 ¢ 2/m 0,4,0 0,3,4 40,4 4,00 hkl : h+k,l =2n
2 b m.mm 00,4 440 hkl : h+k+1=2n
2 a m.mm 00,0 4,44 hkl : h+k+1=2n



Crystalline vs. Non—crystalline

Crystalline materials...
e atoms pack in periodic, 3D arrays
* typical off -metals

—many ceramics

—some polymers
crystalline Si02

*Si e Oxygen
Non—crystalline materials...

e atoms have no periodic packing
* occurs for: —complex structures
—rapid cooling

“amorphous”" = non—crystalline
noncrystalline Si0O2



Thermal conductivity

ex) gypsum (CaSO,2H,0) Monoclinic

heated metal tip

WaXx

gypsum

*xellipsoidal rather than circular



Electric susceptibility y

1sotropic material

0N >0

anisotropic material
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00000

anisotropic material
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Physical Properties

— scalar (zero rank tensor)— non-directional physical
quantities, a single number
ex) density, temperature
— vector (first rank tensor)— magnitude and direction
an arrow of definite length and direction
ex) mechanical force, electric field, temperature
gradient

three mutually perpendicular axes Ox;,0x,,0x4

—_

components  E=[E, E,,E,]



SUMMARY OF VECTOR NOTATION AND FORMULAE

Ix this book vectors are printed in bold-face type, thus, p. The components of
p referred to axes Oz,, Oz,, Ox; are p,, Py, Py. We write
P = [P1; P2 3l
and often denote p by p; or [p;].
The magnitude, or length, of p is denoted by p:
p* = pt+pi+p3 = pip;.
A unit vector is one of unit length.
The scalar product of p and q is denoted by p.q:
P-4 = pq; = pgcosf,
where 8 is the angle between p and q.
The vector product of p and q is denoted by p AQ:
PAQ = (pgsinf)l,
where 1 is a unit vector perpendicular to p and q such that p, q, 1 form a right-
handed set. The components of p A q referred to right-handed axes are

[(P2gs— P34 Psi—P1%5 P18a—Pe01)-
The gradient of a scalar ¢ which varies with position is a vector denoted by
grad ¢: adg — [aqb o o
§REP= o, 22y oy
The divergence of a vector p which varies with position is a scalar denoted by
divp:
P 0Py 9Py, 9Py _ Oy

ox,  Oxy ' Oxy O0x;

The curl of a vector p which varies with position is a vector denoted by curl p,
whose components referred to right-handed axes are

9ps _9pg op, O, aps_apl]
dxy oz,’ ox, ox,’ Ox, ox,l




Physical Properties

— second rank tensor
— mechanical analogy
central ring—2 pairs of springs
at right angle

springs on opposite sides are

identical but have a different
spring constant to perpendicular pair

force (cause vector) = displacement (effect vector)

If a force 1s applied 1n a general direction, the
displacement will not be in the same direction as the

applied force (depends on relative stiffness)



Second Rank Tensor

— problem solving
1. find components of the force F in the direction of
each of the two springs
2. work out the displacement which each force
component would produce parallel to each spring
3. combine two orthogonal displacement to find the

resultant displacement



Second Rank Tensor

Fsing k,F sin @
Y E
0 ¢ resu]ztant displacement
Fcosé k F cos® :
F
X
1. force E —[Fcos@B. Fsin 8]l

2. spring constant along x and y are k, and k,,respectively
3. displacement [k, /" cos 0, k, [ sin 0]

resultant displacement tan ¢ = —=tan &
1



Second Rank Tensor

— consequences

1. In an anisotropic system, the effect vector is not,
in general, parallel to the applied cause vector.

2. In two—dimensional example, there are two
orthogonal directions along which the effect is
parallel to the cause.

3. An anisotropic system can be analyzed in terms
of components along these orthogonal principal

directions, termed principal axes.

Along these principal axes, the values of the physical

property are termed the principal values.




Second Rank Tensor

—1in 3—D, general direction— direction cosines, /,m,n
—a force F 1s applied in a general direction resulting
in a displacement D at some angle @ to F

—component of D in the direction of F 2
D, =Dcosg i
K Dcosg _ D,
F F &
0
K =K(k,k,, k) %
—_ (a)
—component of £ along principal axes |/ F
TPehdi;ectior; cosinqs Lm,n ott; the djrection
F =IF, F = ml', F, =nF the anglos betweer F and ihe nys axes

respectively.

F

- component of D along principal axes

D, =klF, D, =k,mF, D, =k;nF

The component
of D in the
direction of F is
defined as
Dr=Dcos ¢




Second Rank Tensor

~ D, =DJIl+D m+D.n pa
= k FI* + k,Fm* + k. Fn’ |
= (kI* +k,m® +kn®)F
I .
F

— variation of a property K with direction
— representation surface

direction cosine /,m,n
X y z

l:—, m:—, n=—
r r r

K =kl>+km’ +kn’ =k (i)z +k, (Z)z + ks (5)2
r r r



Second Rank Tensor

let ’K =1, r=1/JK

kx®+k,y’ +kz* =1

if k,,k,,k, are positive, k,x* +k,y*> + k,z* =1 (ellipsoid)
normal form of the equation of an ellipsoid

2 2 2

+—+—=1(a,b.c: semiaxes)
a b° ‘

representation surface

semiaxes:

1 1 1
In any general direction, the radius 1s equal

to the value of 1/\/E in that direction.




Second Rank Tensor

- electric field £ —> current density }
1) 1f conductor 1s isotropic and obeys Ohm's law
o oF
E:[El,Engg,] j:[j19j29j3]
Jy=0ok, j,=0k,, j,=0FE,

11) 1f conductor 1s anisotropic

J
Ji =0,k +o,E, +0,E,
J, =0,k +o,k, +0,E, J
J; =03k o,k + ok, E E
a b

1sotropic anisotropic



Second Rank Tensor
- physical meaning of o
if field 1s applied along x,, E = [£,,0,0]
L =0k j, =0,k j;=05E
conductivity - nine components specified

In a square array

O Op O3
=05 E
Oy Oy Op }Js '
.=0;1 )
| 051 O3 033 | SO %
o,
second rank tensor, components, Z,
leading diagonal s
X,

* the number of subscripts equals the rank of tensor



Second Rank Tensor

p=[p,pps] 4=14,4.;]
p =19, + 1,9, + 1,5q;
Py =159, + 159, + 154,
Py = 15,9, + 13,9, + 13,4, )

1 2

3

Some examples of second-rank tensors relating two vectors

- Vector gwen or Vector resulting or
Tensor property applied induced
Electrical conductivity electric field electric current density
Thermal conductivity (negative) temperature heat flow density
gradient
Permittivity electric field dielectric displacement
Dielectric susceptibility ’ ’ »»  ppolarization
Permeability magnetic field magnetic induction
Magnetic susceptibility ’s ’ intensity of magnetization




Second Rank Tensor
3
P =19, +1,q,+1q;, = ZT1 q
j=1

3
p2:EIQI+];2Q2+7;3Q3:Z];ij Z iq i (i=1,2,3)

J=1

3
p3:E1Q1+E2Q2+E3Q3:Zquj pi:]:jqj(izlaza:;)
j=1

—Einstein summation convention: when a letter suffix
occurs twice 1in the same term, summation with
respect to that suffix 1s to be automatically understood.

j dummy suffix, i free suffix

p Tq] Tka



Second Rank Tensor

—1n an equation written in this notation, the free suffixs
must be the same 1n all the terms on both sides of the
equation: while the dummy suffixs must occur as pairs
In each term.

€X)

A4, + B, C,D, = EF,
i, j free suffixs k,/ dummy suffixs
(Cleilej = BikalDlj)

—1n this book, the range of values of all letter suffixs
1s 1,2,3 unless some other things 1s specified.



Transformation
p =149, + 1,9, + 154
Py =104, + 19, + 1534
ps =159, + 13,9, + 13;q;

-q; > D, (7;.]. determine), arbitrary axes chosen
- different set of axes — difterent set of coefficients 7,

- both sets of coefficents equally well represent the same
physical quantity

- there must be some relation between them

- when we change the axes of reference, 1t 1s only our
method of representing the property that changes;

the property itself remains the same.



Transformation

- transformation of axes
a change from one set of mutually perpendicular axes
to another set with same origin
first set: x,, x,,x,, second set: x',x',,x",

I,

angular relationship
old

'
X Ay d, dp
|

'
X3 | dj sy, Ui

a, : cosine of the angle between x', and x; (a;): matrix



Direction Cosines, a;

- (a;,)-nine component- not independent

- only three independent quantities are needed to define
the transformation.

- six independent relation between nine coefficients
ay, +ay, +aj; =1
)Gy + Ay, + 1305, =0
a,a, = o, (orthogonality relation)
Kronecker delta o, =1 (i = j)
0@(#]))



Transformation
- transformation of vector components
p PP, P; Withrespectto x,x,,x,

p',p',,p's withrespectto x',x',,x",

Y ' ' )
p'| = p,cosxx'| + p,cosx,x', + p, cos x,x',
=da,p,+a,p, +a;p;

v
P, =0, P T4y P, T Ay D5

oy
r
P53 =0a3 P tas;p, + a5 Ps
in dummy suffix notation A , /“‘1’
P -~
new in terms ot old: p', =a,p. p
0

1 . _ ' )
old in terms of new: p, =a,p'. &

e

x,




Transformation
- transformation of components of second rank tensor
p; =T,q; with respect to x;, x,, X,
p',=T";q", withrespectto x',x",,x",
p'—> p—>qg—q' (—:1nterms of)
Pi=aypy =149, 9,=a,9,
P =ayp,=a;1,q,=a,T,a,q",
p:=1%q,
T'ij — aikalekl

L '
7:] = akiale ki



Transformation

' _ —_—
I, = aikajokz = aikalekl + aikajokz T aikaﬂTm

J

= ailalen + ailajolz T ailaj,%Tl?)
+ aizalezl T aizajozz + aizaj3T23

T az‘3aj1T31 + aisaj2T32 T az‘3aj3Ts3

Transformation laws for tensors

Rg;k Transformation law
Name tensor New in terms of old Old in terms of new
Scalar 0 ¢ = ¢ ¢ = ¢’
Vector 1 i = a;p; Py = ap;
— 2 Ty = apxapTy | Ti; = agia; Ty
— 3 Tise = 03%m%enTimn Tijk = 040miOnkTimn
= 4 Tkt = imn%%0%pTmnop Tiikt = mi%ni%xtTmnop




Definition of a Tensor

—a physical quantity which, with respect to a set of
axes X;, has nine components Zj that transform
according to equations 1", =a,a 1,

—a second rank tensor— physical quantity
existing in 1ts own right, and quite independent of
the particular choice of axes

-when we change the axes, the physical quantity does
not change, but only our method of representing it.

- (a,-j)i array of coefficient relating two set of axes

— symmetric 7;.]. = le.
anti—symmetric (skew—-symmetric) 7;]. = —le.



Representation Quadric

— geometrical representation of a second rank tensor
— consider the equation

S,xx; =1 § .coefficients
S11x12 +5,X,%, +5,;,%,X;

+S5,,%,X, + S223c22 + 8,5, X,

+85,%,%, +55,%,x, + S33x32 =1

—1f Si]' = Sjl. (for 2%} rank ™3 tensor)
2 2 2 _
S1X; +8,x, +85,x5 +28,,%,x, + 285, x,x, +25,,x,x, =1

— general equation of a second—degree surface(2x}=H)
(quadric) referred to its center as origin



Representation Quadric

- transformed to new axes Ox ',
- ' _ '
X, =auX', X;=a.x’,
' (I
Sl.jakl.aljx cxh =1

! ' " ! —_
Sy x', x',=1whereS§',, =a,a,§,

- compared with second rank tensor transformation law
T';, =a;a,T, (1dentical)
it S, =8,
coefticient §;; of the quadric transform like the components

of a symmetrical tensor of the second tank.



Representation Quadric

- a representation quadric can be used to describe any
symmetrical second-rank tensor, and in particular, it

can be used to describe any crystal property which
is given by such a tensor (A 7| A =%, 745, FA)

- principal axes
principal axes- three directions at right angles such that

S, x.x; =1 takes the simpler form

2 2
Sx’+8,x +S,x; =1



Representation Quadric

_Sll S21 S31_ _Sl O O_
1S, |=| Sy Sp Syu|—|0 S, 0
_S31 S32 S33_ _O O S3_

S,,S,,8; : principal components

representation quadric- semi axes

11
ng’\/SZ ’\/83



Representation Quadric

I
(%) (c)

The representation quadric for the tensor [S;;], as (a) an ellipsoid,
(b) & hyperboleid of one sheet, and (¢) a hyperboloid of two sheets.



Representation Quadric

- In a symmetric tensor refered to arbitrary axes, the
number of independent components 1s six.

- 1f the tensor 1s refered to its principal axes, the number
of independent components 1s reduced to three.

- the number of degree of freedom 1s nevertheless still six,
for three independent quantities are needed to specify the
directions of the axes, and three to fix the magnitudes

of the principal components.



Representation Quadric (2%} =1)

- simplification of equations when referred to pricipal axes
p; =S,q, (I, replaced by symmetric S, )
P =519, Dy = 5,45, P3 =934;
- for example, consider electrical conductivity
L =0k, j, =0,k,, Jy =05k,
(o0,,0,,0, : principal conductivities)
-if E is parallel to Ox,,so E, = E, =0
Jj,=Jj,=0 jis parallel to Ox,
-if E=[E,,E,,0],
h =0k, j,=0,E,, j;=0

E and } not parallel

J0y



Effect of Crystal Symmetry on Crystal Properties

- Neumann's Principle
the symmetry elements of any physical properties of
a crystal must include the symmetry elements of
the point group of the crystal
- physical properties may, and often do, possess more
symmetry than the point group.
- ex1) cubic crystals - optically 1sotropic
physical property (1sotropic) possesses the symmetry

elements of all the cubic point groups.



Effect of Crystal Symmetry on Crystal Properties

- ex2) trigonal system (tourmaline, 3m) - optical properties
(variation of refractive index with direction - indicatrix)
indicatrix for 3m- ellipsoid of revolution about triad axis
(optic axis)
ellipsoid of revolution- vertical triad axis
three vertical planes of symmetry
(extra- center of symmetry, other symmetry elements)
- the symmetry of a physical property
a relation between certain measurable quantities associated

with the crystal



Effect of Crystal Symmetry on Crystal Properties

- all second-rank tensor properties are centrosymmetric.
pi=1;q,
-p; =T,(—q;) T, :unchanged

- symmetric second-rank tensor- 6 independent components

- symmetry of crystal reduces the number of independent
components

- consider representation quadric for symmetric second rank

tensor



The effect of crystal symmetry on properties represented by symmetrical
second-rank tensors

Nature of repre. | Number | Tensor referred
Optical Characteristic | sentation quadric | of inde- to axes in the
classt- symmetry and its pendent conventional
Jication System (see p. 280)t orientation coefficients | orientation}
Isotropic | Cubic 4 3-fold axes | Sphere 1 S 0 0 7
(anaxial) o S 0
0 0 8§ 4
Tetragonal | 1 4-fold axis Quadric of revo- 2 S, 0 0 7
Uniaxial{{ Hexagonal | 1 8-fold axis lution about the HHo 8§, 0
Trigonal 1 3-fold axis principal sym- 0 0 S,
metry axis |
(z3)(2)
Orthorhom- | 3 mutually General quadric 3 & 0 O
( bic perpendicular| with axes [0 S O ]
2-fold axes; (x,, x5, 24) || tO 0 0 5
no axes of the diad axes
higher order (z, v, 2)
Monoclinic | 1 2-fold axis General quadric 4 S 0 S,y
Biaxial { with one axis 0 S, 0
(:L'a) “ to the '-Sll 0 Sa..
diad axis (y)
Triclinic A centre of General quadric. 6 Sy Sis Sa]
- gymmetry or | No fixed rela- Sis Sss Sa
no symmetry | tion to crystal- 1Sy Sgs Ssa

lographic axes




Anisotropic Diffusion of Ni in Olivine
Fick's first law

J = _Dijﬁ
8xj

ex) Ni diffusion in olivine((Mg,Fe),S10,, orthorhombic)
at 1150°C
D,=4.40x10"*cm’/s, D,=3.35x10""cm"/s, D,=124x10""cm"/s

111
JD, D, D,

=0.48:0.55:0.09

a:b:c=




Magnitude of a Property in a Given Direction

- defintion

in general, if p, = §,¢q ;, the magnitude § of the property [S; ]

in a certain direction is obtained by applying Z] in that

direction and measuring p, / g,
where p, 1s the componet of ; parallel to Z]

- eX) electrical conductivity
the conductivity o 1n the direction of E is deﬁnedj
to be the component of j parallel
to E divided by E,
that1s, j, / E




Magnitude of a Property in a Given Direction

- analytical expression
(1) referred to principal axes
direction cosine: /,,/,,/,
E=[LE, LE, LE] j=[o/lE, o,LE, 0,,E]
component of } parallel to E
jy=LoE+Lo,E+o,E
magnitude of conductivity in the direction /,

oc=Il'c,+Lo,+l.o,



Magnitude of a Property in a Given Direction

- analytical expression

(1) referred to general axes
[. : direction cosine of E referred to general axes
E = El
component of } parallel to E

j*E/E  in suffix notation JEE

conductivity in the direction /.

_JE _oEE
°T g E?
o=o.l1.

yjitj



Geometrical Properties of Representation Quadric

- length of the radius vector
let P be a general point on the ellipsoid: o, x,x, =1

direction cosines of OP: [, x, =rl, where OP =r
rioll. =1 (oc=0,ll)

goivj yoitj
o=1/r rzl/\/g

special cases- radius vectors 1n the directions of semi-axes

of lengths 1/,/o,, 1/ 02,1/\/;3




Geometrical Properties of Representation Quadric

- In general, any symmetric second-rank tensor property S,

S=1/r* r=1/JS
- the length » of any radius vector of representation quadric
1s equal to the reciprocal of square root of magnitude S

of the property 1n that direction



Geometrical Properties of Quadric Representation

- radius-normal property

Ox; principal axes of o,

—

E=[lE, LE, LE] j=[olE, o,LE, o,E]
direction cosines of } are proportional to

ol, o,l,, ol
if P is a point on o,x; +0,x; + 0, x; =1
such that OP 1s parallel to E
P=(rl,rl,,rl;) where OP =r

tangent plane at P

rlox, +rl,o,x, +rlo,x;, =1



Tangent Plane:

* Theorem: The tangent to the surface F(x, y, z) =c at the point of (X, y,,
Z,) 1s given by

oF oF oF
— (=X +—(=y)+—(2-2)=0
Ox oy 0z

Proof: This is a simple example of gthe use of vector geometry. Given that
(x0, y0, z0) lies on the surface, and so in the tangent, then for any other

point (X, y, z) in the tangent plane, the vector (x-x0, y-y0, z-z0) must lie in

the tangent plane, and so must be normal to the normal to the curve (i.e. to VF

Thus (x-x0, y-y0, z-z0) and VF are perpendicular, and that requirement
1s the equation which gives the tangent plane.



Geometrical Properties of Representation Quadric

- radius-normal property
normal at P has direction cosines proportional to
Loy, l,0,, Lo,

hence normal at P is parallel to }

it p, = §,q,, the direction of ; for a given é

may be found by first drawing, parallel to &
a radius vector OP of the representation quadric,

and then taking the normal to the quadric at P.



Heat Flow in a Crystal

- a point source of heat on the face of a crystal of a tetragonal
mineral (uniaxial)
isothermal surface: (001) plane- circle, (100) plane- ellipse
heat flow-radially away from P, thernal gradient-normal to
1sothermal surface

heat flow = thermal gradient (in general, not parallel)

|c axis
l

h

Xd'ﬂdr

-the resistivity along the c-axis
(100) face is less than that normal to it




Heat Flow in a Crystal

... 0T
- resistivity P -r;h,
= ar’ d; cos 0 (long rod experiment)
- conductivity 4, = —k; ar
Ox,
hcosd
k= thin flat plate
ariar plate) v,

Conductivity Resistivity

k=hcos9 r=dT/dr cos 8
d7/dr h




Heat Flow in a Crystal

2z h d7/dr
d7/dr

Conductivity surface Resistivity surface

Along the principal axes 1/r =k



AT

-grad T

b C

Fic. 11.2. Heat flow down a long rod. The directions of —grad T
and h in relation to (a) the rod, (b) the resistivity ellipsoid, and
{c) the conductivity ellipsoid. '



b c

Fia.11.1. Heat flow across a flat plate between good conductors.
The directions of —grad 7' and h in relation to (a) the plate,
(b) the resistivity ellipsoid, and (c) the conductivity ellipsoid.



