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Crystalline vs. Non-crystalline

•  atoms pack in periodic 3D arrays
Crystalline materials...
•  atoms pack in periodic, 3D arrays
• typical of: -metals

-many ceramicsmany ceramics
-some polymers

crystalline SiO2

  h i di ki

Non-crystalline materials...
Si Oxygen 

•  atoms have no periodic packing
• occurs for: -complex structures

-rapid cooling-rapid cooling

t lli SiO

“amorphous" = non-crystalline
noncrystalline SiO2



Thermal conductivity 
ex) gypsum (CaSO42H2O)              Monoclinic

heated metal tip

wax

gypsum

*ellipsoidal rather than circular





Physical Properties

- scalar (zero rank tensor)- non-directional physical

quantities, a single number

ex) density temperatureex) density, temperature    

- vector (first rank tensor)- magnitude and direction

an arrow of definite length and direction

ex) mechanical force, electric field, temperature, , p

gradient

h ll di l O O Othree mutually perpendicular axes Ox1,Ox2,Ox3

components  
1 2 3[ , , ]E E E E=

JG
1 2 3[ ]





Physical Properties

- second rank tensor

- mechanical analogymechanical analogy

central ring-2 pairs of springs

at right angle

springs on opposite sides are

identical but have a different

i t t t di l ispring constant to perpendicular pair

force (cause vector) displacement (effect vector)

If a force is applied in a general direction, the 

displacement will not be in the same direction as thedisplacement will not be in the same direction as the

applied force (depends on relative stiffness)



Second Rank Tensor

- problem solving

1. find components of the force F in the direction of 

each of the two springseach of the two springs

2. work out the displacement which each force

component would produce parallel to each spring

3. combine two orthogonal displacement to find the

resultant displacement



Second Rank Tensor

ysinF θ 2 sink F θ

θ
cosF θ 1 cosk F θ

φ resultant displacement

F
x

F

1 force [ cos sin ]F F Fθ θ=
JG

1 2

1. force [ cos , sin ]
2. spring constant along  and  are  and , respectively
3 di l [ i ]

F F F
x y k k

k F k F

θ θ

θ θ

=

1 2

2

3. displacement [ cos , sin ]

resultant displacement tan tan

k F k F
k

θ θ

φ θ=
1

   resultant displacement tan tan
k

φ θ=



Second Rank Tensor

- consequences

1. In an anisotropic system, the effect vector is not,1. In an anisotropic system, the effect vector is not, 

in general, parallel to the applied cause vector.     

2. In two-dimensional example, there are two 

orthogonal directions along which the effect is 

parallel to the cause.

3 A i t i t b l d i t3. An anisotropic system can be analyzed in terms

of components along these orthogonal principal

directions, termed principal axes.

Along these principal axes the values of the physicalAlong these principal axes, the values of the physical

property are termed the principal values.



Second Rank Tensor

-in 3-D general direction- direction cosines l m n-in 3-D, general direction- direction cosines, l,m,n
-a force     is applied in a general direction resulting

in a displacement    at some angle     to
F
JG

F
JG

D
JG

ϕp g
-component of    in the direction of

Fϕ
F
JG

D
JG

cosFD D ϕ= cos
cos

F

F

D D
D DK
F F

ϕ
ϕ

= =

1 2 3( , , )
F F

K K k k k=
G

-component of     along principal axesF
JG

,  ,  x y zF lF F mF F nF= = =

- component of     along principal axes   

, ,x y z

D
JG

1 2 3,  ,  x y zD k lF D k mF D k nF= = =



Second Rank Tensor

2 2 2

 F x y zD D l D m D n

k Fl k Fm k Fn

− = + +

= + +1 2 3
2 2 2

1 2 3

         

          = ( )

k Fl k Fm k Fn

k l k m k n F

= + +

+ +

2 2 2
1 2 3 FDK k k nl k m

F
= = + +−

- variation of a property K with direction
- representation surface

direction cosine , ,l m n
x y zl

2 2 2 2 2 2

 ,  ,  

( ) ( ) ( )

yl m n
r r r

x y zK k l k k k k k

= = =

2 2 2 2 2 2
1 2 3 1 2 3( ) ( ) ( )yK k l k m k n k k k

r r r
= + + = + +



Second Rank Tensor
2let 1 1/K K2

2 2 2
1 2 3

let  1,   1/
1

r K r K
k x k y k z

= =

+ + =
2 2 2

1 2 3 1 2 3if , ,  are positive, 1 (ellipsoid)
normal form of the equation of an ellipsoid
k k k k x k y k z+ + =

2 2 2

2 2 2

q p

1 ( , . : semiaxes)x y z a b c
a b c

+ + =

representation surface
1

a b c

1 1

1

1semiaxes: 
k 2 3

1 1, ,
k k

In any general direction, the radius is equal

to the value of 1/ in that directionKto the value of  1/   in that direction.K



Second Rank Tensor

- electric field   current density 
i) if conductor is isotropic and obeys Ohm's law

E j→
JG G

  i) if conductor is isotropic and obeys Ohm s law

      j Eσ=
G JG

JG G
1 2 3 1 2 3

1 1 2 2 3 3

     [ , , ]   [ , , ]
      ,   ,   
E E E E j j j j
j E j E j Eσ σ σ
= =

= = =

G G

1 1 2 2 3 3

  ii) if conductor is anisotrop
j j j

ic
j E E Eσ σ σ= + +1 11 1 12 2 13 3

2 21 1 22 2 23 3

       
       

j E E E
j E E E

σ σ σ
σ σ σ

= + +
= + +

3 31 1 32 2 33 3       j E E Eσ σ σ= + +

isotropic       anisotropic



Second Rank Tensor

- physical meaning of σ ij

1 1

- physical meaning of 

  if field is applied along ,  [ ,0,0] x E E

σ

=
JG

1 11 1 2 21 1 3 31 1             
  conductivity - nine components specified

j E j E j Eσ σ σ= = =

y p p
  in a square array 

⎡ ⎤11 12 13

21 22 23   
σ σ σ
σ σ σ
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥31 32 33σ σ σ

  second rank tensor, components, 

⎢ ⎥⎣ ⎦
, p ,

    leading diagonal 

* the number of subscripts equals the rank of tensor



Second Rank Tensor

in general

1 2 3 1 2 3

in general  

[ , , ]   [ , , ]p p p p q q q q= =
JG G

T T T⎡ ⎤
1 11 1 12 2 13 3

2 21 1 22 2 23 3

  
  
p T q T q T q
p T q T q T q
= + +
= + +

11 12 13

21 22 23

T T T
T T T
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

2 21 1 22 2 23 3

3 31 1 32 2 33 3  
p q q q
p T q T q T q= + + 31 32 33T T T⎢ ⎥⎣ ⎦



Second Rank Tensor

3

1 11 1 12 2 13 3 1
1

    j j
j

p T q T q T q T q
=

= + + =∑
3 3

2 21 1 22 2 23 3 2            ( 1, 2,3)

j

j j i ij jp T q T q T q T q p T q i= + + = = =∑ ∑
1 1

3

3 31 1 32 2 33 3 3            ( 1, 2,3)

j j

j j i ij jp T q T q T q T q p T q i

= =

= + + = = =∑3 31 1 32 2 33 3 3
1

( , , )j j i ij j
j

p q q q q p q
=
∑

-Einstein summation convention: when a letter suffixEinstein summation convention: when a letter suffix
occurs twice in the same term, summation with
respect to that suffix is to be automatically understood.

dummy suffix,   free suffix

k k

j i
p T q T q= =i ij j ik kp T q T q



Second Rank Tensor

-in an equation written in this notation, the free suffixs
must be the same in all the terms on both sides of themust be the same in all the terms on both sides of the
equation: while the dummy suffixs must occur as pairs
in each term.  

ex)

ij ik kl lj ik kjA B C D E F+ =

 ,  free suffixs  ,  dummy suffixs
( )

ij ik kl lj ik kjA B C D E F
i j k l
C B D B C D

+

 ( )kl ik lj ik kl ljC B D B C D=

-in this book the range of values of all letter suffixsin this book, the range of values of all letter suffixs
is 1,2,3 unless some other things is specified.



p T q T q T q= + +
Transformation

1 11 1 12 2 13 3

2 21 1 22 2 23 3

 
  
p T q T q T q
p T q T q T q
= + +
= + +

3 31 1 32 2 33 3 p T q T q T q= + +

- ( determine) arbitrary axes chosenq p T→   (  determine), arbitrary axes chosen
- different set of axes  different set of coefficients 

j i ij

ij

q p T
T

→

→

- both sets of coefficents equally well represent the same 
physical quantity    physical quantity

- there must be some relation between them
h h h f f i i l- when we change the axes of reference, it is only our

    method of representing the property that changes;
    the property itself remains the same.



Transformation

transformation of axes- transformation of axes
  a change from one set of mutually perpendicular axes

1 2 3 1 2 3

   to another set with same origin
first set: , , , second set: ' , ' , 'x x x x x x1 2 3 1 2 3  first set: , , ,   second set: , ,

  angular relationship
x x x x x x

ld                   

1 2 3

         old
                                 x x x

1 11 12 13           '                
new '

x a a a
x a a a2 21 22 23

3 31 32 33

new                   
           '                

x a a a
x a a a

: cosine of the angle between ' and ij ia x ( ) : ma rixtj ijax



Direction Cosines, aij

- ( )-nine component- not independentija

- only three independent quantities are needed to define
the transformation

2 2 2

    the transformation.
- six independent relation between nine coefficients

2 2 2
11 12 13

11 21

    1a a a

a a

+ + =

12 22 13 23 0a a a a+ + =11 21    a a 12 22 13 23 0

     )  (i k ijk ja a orthogonality relatio

a a a a

nδ

+ +

=

      Kronecker delta  1 ( )

0 )(
ij i j

ji

δ = =

≠                                        0 )( ji ≠



Transformation

transformation of vector components

1 2 3 1 2 3

- transformation of vector components

        , ,     with respect to   , ,   p p p p x x x
JG

n n n
1 2 3 1 2 3          ' , ' , '  with respect to  ' , ' , '

' ' ' '

p p p x x x

+ +1 1 1 1 2 2 1 3 3 1

11 1 12 2 13

  ' cos ' cos ' cos '
       
p p x x p x x p x x

a p a p a p
= + +
= + + 3

2 21 1 22 2 23 3  '
'
p a p a p a p
p a p a p pa

= + +
= + +3 31 1 32 2 33 3  

in dummy suffix notation
p a p a p pa= + +

  new in terms of old:  

  old

'

in terms of new:  '
i ij j

i ji jp

p a p

ap =

=

i ji jpp



Transformation

1 2 3

- transformation of components of second rank tensor
     with respect to  , ,   i ij jp T q x x x= 1 2 3

1 2 3

p , ,

    ' ' '  with respect to  ' , ' , '
i ij j

i ij j

p q

p T q x x x=

    ' '  ( : in terms of)
    '       i ik k k kl l l jl

p p q q
p a p p T q q a q
→ → → →
= = = ' ji ik k k kl l l jlp p p q q q

    ' = = '
j

i ik k ik kl l ik kl jl jp a p a T q a T a q=

    '

'

' '

   
i ij j

ij ik jl kl

p T q

T a a T

=

=

   '
ij ik jl kl

ij ki lj klT a a T=

  



Transformation

1 1 2 2 3 3'ij ik jl kl ik j k ik j k ik j kT a a T a a T a a T a a T

a a T a a T a a T

= = + +

= + +1 1 11 1 2 12 1 3 13

2 1 21 2 2 22 2 3 23

                     

                      
i j i j i j

i j i j i j

a a T a a T a a T

a a T a a T a a T

= + +

+ + +

3 1 31 3 2 32 3 3 33                      i j i j i ja a T a a T a a T+ + +



Definition of a Tensor

-a physical quantity which, with respect to a set of
axes    , has nine components      that transform

di i
ix ijT

'T Taccording to equations

-a second rank tensor- physical quantity

'ij ik jl klT a a T=

a second rank tensor physical quantity
existing in its own right, and quite independent of
the particular choice of axesp

-when we change the axes, the physical quantity does
h b l h d f i inot change, but only our method of representing it.

- : array of coefficient relating two set of axes( )ija : array of coefficient relating two set of axes

- symmetric 

( )ija

ij jiT T=
anti-symmetric (skew-symmetric)

ij ji

ij jiT T= −



Representation Quadric

- geometrical representation of a second rank tensor

- consider the equation

2

1     :coefficientsij i j ijS x x S

S x S x x S x x

=

+ +11 1 12 1 2 13 1 3

2
21 2 1 22 2 23 2 3

 S x S x x S x x

S x x S x S x x

+ +

+ + +
2

31 3 1 32 3 2 33 3 1S x x S x x S x+ + + =

- if                    (for 2차 rank 대칭 tensor)ij jiS S=
2 2 2

11 1 22 2 33 3 23 2 3 31 3 1 12 1 22 2 2 1S x S x S x S x x S x x S x x+ + + + + =
- general equation of a second-degree surface(2차곡면)

(quadric) referred to its center as origin

11 1 22 2 33 3 23 2 3 31 3 1 12 1 2

(quadric) referred to its center as origin



Representation Quadric

- transformed to new axes '
' '

iOx
x a x x a x= =     

   ' ' 1
i ki k j lj l

ij ki lj k l

x a x x a x

S a a x x

= =

=

   ' ' ' 1 where 'kl k l kl ki lj ijS x x S a a S= =

- compared with second rank tensor transformation law
 '   (identical)ij ik jl klT a a T= ( )

  if 
ffi i t f th d i t f lik th t

ij ik jl kl

ij jiS S
S

=

 coefficient  of the quadric transform like the components

   of a symmetrical tensor of the second tan
ijS

k.



Representation Quadric

- a representation quadric can be used to describe any
symmetrical second rank tensor and in particular it  symmetrical second-rank tensor, and in particular, it

   can be used to describe any crystal property which
전기전 유전율 투자율  is given by such a tensor ( ,전기전도도 , ) 유전율 투자율

- principal axes
i i l th di ti t i ht l h th t   principal axes- three directions at right angles such that

   1 takes the simpler formij i jS x x =
2 2 2

1 1 2 2 3 3    1
j j

S x S x S x+ + =



Representation Quadric

11 21 31 1 0 0S S S S⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

3

21 22 23 2

31 32 33 3

0 0
0 0

ijS S S S S
S S S S

⎢ ⎥ ⎢ ⎥⎡ ⎤ = →⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦31 32 33 3

1 2 3

0 0
, , :  principal components

S S S S
S S S

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

2 2 2

1x y z
+ + =2 2 2 1

1 1 1representation quadric semi axes

a b c
+ + =

1 2 3

representation quadric- semi axes , ,
S S S



Representation Quadric



Representation Quadric

- in a symmetric tensor refered to arbitrary axes, they y ,
   number of independent components is six. 

if the tensor is refered to its principal axes the number- if the tensor is refered to its principal axes, the number 
   of independent components is reduced to three.
- the number of degree of freedom is nevertheless still six,
   for three independent quantities are needed to specify the 
   directions of the axes, and three to fix the magnitudes 

of the principal components   of the principal components.



Representation Quadric (2차 곡면)

- simplification of equations when referred to pricipal axes 
     (  replaced by symmetric )i ij j ij ijp S q T S=

1 1 1 2 2 2 3 3 3

( p y y )

   ,  ,  
for example consider electrical conductivity

i ij j ij ijp q

p S q p S q p S q= = =

1 1 1 2 2 2

- for example, consider electrical conductivity
   ,  ,j E j Eσ σ= = 3 3 3 j Eσ=

1 2 3

1 2 3

   ( , , :  principal conductivities)

- if  is parallel to , so 0E Ox E E

σ σ σ

= =
JG

1 2 3

2 3 1

p ,

   0      j is parallel to 

if [ 0]

j j Ox

E E E

= =
G

JG
1 2

1 1 1 2 2 2 3

- if [ , ,0],  
   ,  ,  0
E E E
j E j E jσ σ

=
= = =

     and  not parallelE j
JG G



Effect of Crystal Symmetry on Crystal Properties

- Neumann's Principle
   the symmetry elements of any physical properties of

a crystal must include the symmetry elements of   a crystal must  include
point group

the symmetry elements of 
   the  of the crystal
- physical properties may, and often do, possess more
    symmetry than the point group.y y p g p
- ex1)  cubic crystals - optically isotropic

h i l t (i t i ) th t   physical property (isotropic) possesses the symmetry
    elements of all the cubic point groups.
  



Effect of Crystal Symmetry on Crystal Properties

- ex2)  trigonal system (tourmaline, 3 ) - optical propertiesm
    (variation of refractive index with direction - )

indicatrix for 3 - ellipsoid of revolution about triad axis
indicatrix

m     indicatrix for 3  ellipsoid of revolution about triad axis
            

m
                                                               (optic axis)

lli id f l ti ti l t i d i    ellipsoid of revolution- vertical triad axis
                                        three vertical planes of symmetry
    (extra- center of symmetry, other symmetry elements)
- the symmetry of a physical propertyy y p y p p y
   a relation between certain measurable quantities associated

with the crystal     with the crystal   



Effect of Crystal Symmetry on Crystal Properties

- all second-rank tensor properties are centrosymmetric.
   

( ) : unchanged
i ij jp T q

p T q T

=

=   - ( )   : unchanged

- symmetric second-rank tensor- 6 independent components
i ij j ijp T q T= −

- symmetry of crystal reduces the number of independent 
components   components

- consider representation quadric for symmetric second rank
t   tensor





Anisotropic Diffusion of Ni in Olivine

Fick's first lawFick s first law

i ij
cJ D ∂

= −
∂

2 4ex) Ni diffusion in olivine((Mg,Fe) SiO , orthorhombic)

j
jx∂

o

-14 2 -14 2 -14 2
x y z

      at 1150 C
D =4.40x10 cm /s, D =3.35x10 cm /s, D =124x10 cm /sx y z

1 1 1a:b:c= : : 0.48 : 0.55 : 0.09
D D D

=
x y zD D D



Magnitude of a Property in a Given Direction

- defintion
  in general, if ,  the magnitude  of the property [ ]i ij j ijp S q S S=g , , g p p y [ ]

   in a certain direction is obtained by applying  in that
i ij j ijp q

q
G

   direction and measuring / ,  

where is the componet of

p q

p
&

& parallel top q
JG G

   where   is the componet of p& parallel to 
- ex) electrical conductivity

p q

G
   the conductivity  in the direction of  is defined

to be the component of parallel

E

j

σ
JG

G
    to be the component of   parallel

    to  divided by ,

j

E E
JG

    that is, /j E&



Magnitude of a Property in a Given Direction

- analytical expression

1 2 3

  (i) referred to principal axes
      direction cosine: , ,l l l1 2 3

1 2 3 1 1 2 2 3 3

, ,

        E [ ,  ,  ]       j [ ,  ,  ]l E l E l E l E l E l Eσ σ σ= =
JG G

G G

2
1

       component of  parallel to j E
j l=&

G JG

2 2
1 2 2 3 3E l E l Eσ σ σ+ +1        j l& 1 2 2 3 3

       magnitude of conductivity in the direction i

E l E l E
l

σ σ σ+ +

2 2 2
1 1 2 2 3 3          l l lσ σ σ σ= + +



Magnitude of a Property in a Given Direction

- analytical expression
(ii) f d t l (ii) referred to general axes

        : direction cosine of  referred to general axesil E
JG

        

t f ll l t
i iE El

j E

=
G JG

      component of  parallel to 

        /      in suffix not

j E

j E E
G JG
i ation  /i ij E E

       conductivity in the direction il
E Ej E σ

2 2        iji j ii E Ej E
E
l

E
l

σ
σ = =

        = iij jl lσ σ



Geometrical Properties of Representation Quadric

- length of the radius vector
let be a general point on the ellipsoid: 1P x xσ =  let  be a general point on the ellipsoid: 1

  direction cosines of :        where 
ij i j

i i i

P x x
OP l x rl OP r

σ =

= =
2

2

    1   ( )

1/ 1/
ij i j ij i jr l l l lσ σ σ= =

2    1/     1/
  special cases- 

r rσ σ= =
radius vectors in the directions of semi-axes

1 2 3   of lengths 1/ , 1/ ,1/  σ σ σ



Geometrical Properties of Representation Quadric

- in general, any symmetric second-rank tensor property ijS
2   

- the length of any radius vector of representation quadric
1/     1/

r
S r r S= =

  the length  of any radius vector of representation quadric
   is equal to the reciprocal of square root of magnitude S

r

f h i h di i   of the property in that direction



Geometrical Properties of Quadric Representation

- radius-normal property
principal axes ofOx σ

1 2 3 1 1 2 2 3 3

   principal axes of 

  [ ,  ,  ]       [ ,  ,  ]
i ijOx

E l E l E l E j l E l E l E

σ

σ σ σ= =
JG G

  direction cosines of  are proportional toj
l l lσ σ σ

G

1 1 2 2 3 3
2

1 1

        ,  ,  

  if  is a point on 

l l l

P x

σ σ σ

σ σ+ 2 2
2 2 3 3 1x xσ+ =

   such that  is parallel to 
( ) where

OP E
P rl rl rl OP r= =

JG

1 2 3   ( , , ) where 
  tangent plane at P
P rl rl rl OP r= =

1 1 1 2 2 2 3 3 3  1rl x rl x rl xσ σ σ+ + =



Tangent Plane:

• Theorem: The tangent to the surface F(x, y, z) =c at the point of (x0, y0, 
z0) is given by

( ) ( ) ( ) 0F F F∂ ∂ ∂
0 0 0( ) ( ) ( ) 0x x y y z z

x y z
− + − + − =

∂ ∂ ∂

P f Thi i i l l f th f t t Gi th tProof: This is a simple example of gthe use of vector geometry. Given that 
(x0, y0, z0) lies on the surface, and so in the tangent, then for any other 
point (x, y, z) in the tangent plane, the vector (x-x0, y-y0, z-z0) must lie in 
the tangent plane, and so must be normal to the normal to the curve (i.e. to F∇

Thus (x-x0, y-y0, z-z0) and        are perpendicular, and that requirement 
is the equation which gives the tangent plane

F∇
is the equation which gives the tangent plane.



Geometrical Properties of Representation Quadric

- radius-normal property
l t h di ti i ti l tP

1 1 2 2 3 3

 normal at  has direction cosines proportional to
      ,  ,  

P
l l lσ σ σ

  hence normal at  is parallel to jP
G

 if , the direction of  for a given  i ij jp S q p q=
JG G

    may be found by first drawing, parallel to 
a radius vector of the representation quadric

q
OP

G

   a radius vector  of the representation quadric, 
    and then taking the normal to the quadric at .

OP
P



Heat Flow in a Crystal

i f h h f f l f l- a point source of heat on the face of a crystal of a tetragonal 
   mineral (uniaxial)
  isothermal surface: (001) plane- circle, (100) plane- ellipse

heat flow-radially away from P thernal gradient-normal to  heat flow radially away from P, thernal gradient normal to 
   isothermal surface

h fl h l di (i l ll l)  heat flow thermal gradient (in general, not parallel)
  

⇒

-the resistivity along the c-axis-the resistivity along the c-axis
is less than that normal to it



Heat Flow in a Crystal

T∂- resistivity - ij j
i

T r h
x
∂

=
∂

/ cos  r=  (long rod experiment)dT dr
h

θ

- conductivity i ij
j

Th k
x
∂

= −
∂

cos  k=     (thin flat plate)
/

j

h
dT dr

θ
/dT dr



Heat Flow in a Crystal






