Fillet of a fenny snake, Into the cauldron boil and bake

5. ELECTROACTIVE ORGANIC COMPOUNDS

Source No Spec: Text W: Wikipedia

Contents

- Chemistry Essentials
- Overview of Structures and Fundamental Properties
 - Conductive Polymers
 - Charge-Transfer Complexes
 - Buckyballs and Nanotubes
- Piezoelectricity, Pyroelectricity, and Ferroelectricity
 - Basic Principles
 - Organic Materials System
- Magnetism
 - Basic Principles
 - Organic Magnets

Moles and Molecules

- One mole refers to the amount of substance consisting of 6.02 $\rm x10^{23}$ (N_A, Avogadro number) elementary entities
- 1 mole of C weighs 12 g
- 1 mole of gas takes the same volume of 22.4 L regardless of their chemical nature.
- Number of molecules per unit volume (n) is given as

$$n = \frac{N_A \rho}{M}$$
, where ρ is density, M is molecular weight

• Gas const (R) and Boltzmann const

```
R = k_B N_A

R = 8.314472 \ JK^{-1}M^{-1}

k_B = 1.3806504 \ \text{x} \ 10^{-23} \ JK^{-1}
```

Acids and Bases

- 1884 Arrehenius : ions in water Acid: H⁺ generation when dissolved in water (HCl etc)
 Base: OH⁻ generation when dissolved in water (NaOH etc)
- 1923 Lowry & Brönsted Acid: H⁺ donor Base: H⁺ acceptor (NH₃ etc)
- 1923 Gilbert Lewis
 Acid: electron acceptor
 Base: electron donor

• pH=-log[H⁺]

pH=7 for water, [H⁺] is 1.0 x 10⁻⁷ mol L⁻¹ Acids: pH <7 Base: pH >7 Doubled [H+] lowers pH by 0.3 Ionization

NaCl(s) \rightarrow Na⁺(aq) + Cl⁻(aq) Arrhenius Acid HCl(g) \rightarrow H⁺(aq)+ Cl⁻(aq) Broensted Base but not the Arrhenius Base: Na₂CO₃ etc Lewis Acid but not the Broensted Acid: ZnCl2, AlCl3 etc

acid base

HCl + NH₃ → NH₄⁺ +Cl⁻ (molecule-molecule) NH₄⁺ + OH⁻ → NH₃ +H₂O (ion-ion) H₂PO₄⁻ + H₂O → HPO₄²⁻ +H₃O⁺ (ion-molecule) What about the position of equilibrium? Acidity Constant (pKa) $HA + H_2O \rightleftharpoons^{Ka'} A^- + H_3O^+$ $Ka' = \frac{[A^-][H_3O^+]}{[HA][H_2O]}$ and $[H_2O]=55.4 \text{ mL}^{-1}$ $-\Delta G^0 = RT \ln K$ We write the above equation in short for convenience $HA \rightleftharpoons^{Ka} A^- + H^+$ (NB, H⁺stands for H_3O^+) $pKa = -log_{10}Ka$

Compound	Equilibrium	рК _а	Δ <i>H</i> ^θ /kJ mol ^{−1}	$-T\Delta S^{\theta}$ /kJ mol ⁻¹
HA = Acetic acid	$HA \rightleftharpoons H^+ + A^-$	4.756	-0.41	27.56

Ions

- Water: density ~1.0 gcm⁻³, [H2O]=55.4 molL⁻¹, self-ionization 1.0 x 10⁻⁷ mol L⁻¹ \rightarrow [H₃O⁺]/[H₂O]= 2 x 10⁻⁹
- Proton is several orders of magnitude smaller than the water molecule, thus attracted immediately to water molecules and surrounded by them(usu. 4): H(H₂O)₄⁺
- Ions dissolved in water forms hydration shell and weaken the structure of H-bonding of water → lowers the Tm; freezing point depression → Salt water has a lower freezing point than water
- Water is polar (ε=78) H-bond forming solvent

Solvents

Table 5.1 Properties of some common organic solvents.

- Thermodynamics of solution: [']like dissolves like'; ΔG=ΔH-TΔS
- Why solvents?
 Processing to the required
 - shape
 - Fascillitate the reaction; more collision via solvation and heat dissipation
- Polar & Nonpolar Solvents: Dipole moment, Dielectric constant, Miscibility with water
- Protic & Aprotic solvents
- (Note the smallest size of proton; stronger Coulomb interaction)

Solvent	Structure	Boiling	Dielectric	Ck	1.55
autoben one	be skinned of the	point (°C)	constant	Polar	Protic
Hexane	CH ₈ (CH ₂) ₄ CH ₃	69	2	periologies (a	nalach
Benzene	\bigcirc	80	2.3	enderen Holesto	ojana y Ogeđe
Diethyl ether	CH5CH2OCH2CH3	35	4.3		
Chloroform	CHCla	61	4.8		
Acetic acid	о н ₆ с-с-он	118	6.1	*	•
Tetrahydrofuran (THF)	\bigcirc	66	7.6	italijaan laguda fit	edi hay
Acetone	ньс сн	56	21	*	ite and the played by over all by
1-Propanol	CH_CH_CH_OH	97	20	*	<i>k</i>
Ethanol	CH ₈ CH ₂ OH	78	25	*	*
Methanol	CH ₃ OH	65	33	*	*
Acetonitrile	H ₃ CC≡N	82	38	*	words a
Dimethyl sulfoxide (DMSO)	нас сна	189	47		in al a suls 'n by she
Water	H-O-H	100	78		*
Formamide	0 	210	111		*

Functional Groups

Compound type	Functional group
Alcohol	-с-о-н
Aldehyde	H C=O
Amine	-c-N
Amide	
Carboxylic acid	о —С—О—Н
Ester	
Ether	
Ketone	C C = O
Thiol	—)с—s—н
Nitrile	—C≡N

- Table 5.2 Chemical structures of common functional groups found in organic compounds.
- Alcohol(R-OH): polar, protic, solubility in water (depends on R), forms alkoxide base RO⁻M⁺ with reactive metal or NaH
- Aldehyde: polar, E⁺ center (C=O)
- Amines: unshared pair of electrons, organic base, H-bonding, primary to tertiary amines
- Amides: carboxylic acid derivative
- Carboxylic acid: acidity, pKa=4.76 for acetic acid (0.02% ionized in water).
- Esters: H-bond acceptor but not donor, distinctive odors- artificial flavouring and fragrances
- Ethers: H-bond acceptor but weaker, low boiling point, anesthesia
- Ketones: polar, acetone is most common solvent
- Thiols: mercaptan, strong odour, special binding to Au surface
- Nitrile: polar, electron withdrawing

Aromatic Compound

- Benzene & fused benzene rings derivative, Heteroaromatic compounds
- Aroma, Aromatic stabilization energy, substitution reaction rather than addition
- Huckel rule: delocalized π -electron system, planar, 4n+2 electrons
- Five and six membered heteroaromatic rings: different use of unshared electrons; basicity and electron density in the ring
- Most important molecules for 'Molecular Electronics'

Conjugated Polymers

Polyacetylene (PA)

Poly-p-phenylene (PPP)

Polythiophene (PTh)

Polypyrrole (PPy)

	I _p (eJ)	E.A.(eJ)	E _g (eV)	V _{ox}	V _{rdx}
PA	4.7	3.2	1.5	0.4	-1.1
РРу	3.8	0.8	3.0	-0.6	-3.6
PPP	5.6	2.3	3.3	1.2	-2.1
PTh			2.2	1.1	

Electronic Parameters (PA, Ppy, PPP)

PEDOT:PSS Transparent Conducting Polymer

- Poly(3,4-ethylenedioxythiophene): insoluble polymer, transparent and stable in oxidized state
- PEDOT:PSS is water soluble complex
- Potential application: capacitors, antistatic coating, printed circuit board, semi-transparent electrode for OLED
- Shows electrochromic properties (Fig 5.6)

CT Complexes

Figure 5.7 Examples of compounds that can form charge-transfer complexes. Electron donors are shown on the left: perylene, tetrathiafulvalene (TTF), tetramethyltetraselenafulvalene (TMTSF) and bis(ethylenedithio)-TTF (BEDT–TTF or ET). Electron acceptors and anions are shown on the right: tetracyanoquinodimethane (TCNQ), tetracyanonaphthalene (TNAP) and Ni(dmit)₂ (H₂dmit = 4,5-dimercapto-1,3-dithiole-2-thione).

Phthalocyanines

 Becomes electrically conductive on oxidation (I₂, Br₂ etc): Hosts various transition metals (M=Fe, Cu, Co, Ni, Zn)

Porphyrin

Fullerenes : C₆₀

- Discovered in 1985 by Kroto, Curl, and Smalley (1996 Nobel prize in chemistry)
- Diameter is about 1 nm. Comprises 20 hexagones and 12 pentagones
- 5-membered conjugated rings are source of electron affinity: to make cyclopentadienyl anion.
- Good electron acceptor; at least 6 electrons and possibly up to 12 electrons
- Doped C60 with potassium metal: $\rm K_3C_{60}$ is a conductor and shows super conductivity at below 18 K

Carbon Nanotubes (CNT)

Nanotubes being grown by plasma enhanced chemical vapor deposition

- 1991 Sumio Iijima at NEC discovered CNT
- Synthesized initially by arc discharge but since 1993 by PECVD
- Diameter down to 0.7 nm, metallic or semiconducting properties with doping capability and excellent mechanical properties
- Achiral SWNT: armchair (n,n) and zigzag (n,0), Chiral SWNT: others
- Metallic when | n-m | = 3I (I is an integer)
- Semiconducting with Eg=0.45/R eV (where R is the radius of chiral SWNT)
- Multiwall nanotube: structured like Russian doll
- Tensile strength 45 x 10⁹ Pa (20 x steel), Young's modulus (1.3- 1.8) x 10⁹ Pa (10x steel)

Piezo-, Pyro-, and Ferroelectric

Table 5.5	Piezoelectric an	d pyroelectric	properties of	common	materials	[12 - 14]	
-----------	------------------	----------------	---------------	--------	-----------	-----------	--

Material	$T_{\rm C}$ (°C)	ε _r	$d (pC N^{-1})$	$p \ (\mu \mathrm{C} \mathrm{m}^{-2} \mathrm{K}^{-1})$
BaTiO ₃ , barium titanate	120	1900	190	200
TGS, triglycine sulfate	49	43-50	25	280-350
PZT, lead zirconate titanate, $PbTi_{1-x}Zr_xO_3$	200–400	1000-2000	250–500	60–500

Polymer	Mer unit	T _g (°C)	7 _n (℃)	Er	(pC N ¹)	р [µС m ² K ¹
PVC	H H H H H H	83	212	3.5	0.7	1
PVDF	H CI F H 	-35	175	12	28	40
Nylon-11		68	195	3.7	0.3	5

Table 5.6 Piezoelectric and pyroelectric properties of polymer	s [12-1-	41.
--	----------	-----

PVDF and Copolymers

- PVDF is typically 50-60% crystalline. To give the material its piezoelectric properties, it is mechanically stretched to orient the molecular chains and then poled under tension. PVDF exists in several forms: alpha (TGTG'), beta (TTTT), and gamma (TTTGTTTG') phases, depending on the chain conformations as trans (T) or gauche (G) linkages. When <u>poled</u>, PVDF is a <u>ferroelectric</u> polymer, exhibiting efficient <u>piezoelectric</u> and <u>pyroelectric</u> properties. These characteristics make it useful in <u>sensor</u> and <u>battery</u> applications. Thin films of PVDF are used in some newer <u>thermal camera</u> sensors.
 - Unlike other popular piezoelectric materials, such as <u>PZT</u>, PVDF has a negative d₃₃ value. Physically, this means that PVDF will compress instead of expand or vice versa when exposed to the same electric field.
 - Copolymers of PVDF are also used in piezoelectric and electrostrictive applications. One of the most commonly-used copolymers is P(VDF-<u>TrFE</u>), usually available in ratios of about 50:50 wt% and 65:35 wt% (equivalent to about 56:44 mol% and 70:30 mol%). Another one is P(VDF-<u>TFE</u>). They improve the piezoelectric response by improving the crystallinity of the material.
 - While the copolymers' unit structures are less polar than that of pure PVDF, the copolymers typically have a much higher crystallinity. This results in a larger piezoelectric response. d_{33} values for P(VDF-Tr FE) have been recorded to be as high as -38 pC/N⁷ versus -33 pC/N in pure PVDF⁵.

Magnetic Properties

Magnetic dipole moment (m_m)

 $\mathbf{m}_{\mathbf{m}} = IA\mathbf{u}_{\mathbf{n}}$

*1) $\mathbf{m}_{\mathbf{m}}$ of pairs of electrons in closed subshell cancel each other

thus only unfilled subshells contribute to the \mathbf{m}_{atom}

M (magnetization; Am^{-1}) = magnetic dipole moment per unit volume

H (magnetizing field; Am^{-1}) = total field that would be present if the field were in vacuum

B (magnetic field: T)=total flux magnetic field lines through a unit crosssectional area of material

 $\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M})$ and also $\mathbf{B} = \mu_r \mu_0 \mathbf{H}$

where μ_0 is the permeability of free space ($4\pi \times 10^{-7}$ Hm⁻¹), $\hat{\mu}_r$ is relative permeability

 $\mathbf{M} = \hat{\boldsymbol{\chi}}_{m} \mathbf{H}$ where $\hat{\boldsymbol{\chi}}_{m} (= \hat{\mu}_{r} - 1)$ is the magnetic susceptibility

Type of magnetism	Susceptibility	Atomic arrangement	Example
Diamagnetism negative χ_m *1) universal pro *2) $\chi_m = -1$ for the	Small and negative perty ne		Au, Ag, Cu, many polymers. Atoms have closed shells
superconductor b	elow Tc	Atoms have no magnetic moment	
Paramagnetism $positive \chi_m$ Curie law $\chi_m = \frac{C}{T}$ (C is Curie T)	Small and positive	 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	Gaseous and liquid oxygen. Alkali and transition metals
Ferromagnetism	Large and positive	(1) (1) (1) (1) (1) (Fe, Co, Ni

Antiferromagnetism	Small and positive	 (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†) (†)	Salts and oxides of transition metals. e.g. MnO, NiO
Ferrimagnetism	Large and positive	sublattices ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ①	Ferrites
		Magnetic moments on different sublattices do not cancel	

Figure 5.25 Typical magnetization versus magnetic field intensity curve for a ferromagnetic material. H_c = coercive field; M_r = remanent magnetization.

Organic Magnets: Molecule-based Magnets

- Molecule based magnets currently remain laboratory curiosities with no real world applications. As indicated, this is largely due to the very low critical temperature at which these materials become magnetic.
- Specific materials include purely organic magnets made of organic radicals ^[2], mixed coordination compounds with bridging organic radicals ^[3], <u>Prussian Blue</u> related compounds ^[4], and <u>charge transfer complexes</u> ^[5].
 - Molecule based magnets derive their net moment from the cooperative effect of the spin-bearing molecular entities, and can display bulk <u>ferromagnetic</u> and <u>ferrimagnetic</u> behavior with a true <u>critical temperature</u>.

CT complex Radical cation/radical anion Tc ~4.8 K

Figure 5.26 (a) Decamethylferrocene; (b) tetracyanoethylene.