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Kinetics of Rigid Bodies

16.1 Introduction

• the Kinetics of Rigid Bodies

Relations between the forces acting on a rigid body, the shape and 

mass of the body, and the motion produced.   

Motion of the body as a whole + Motion about its mass center

• Our approach will be to consider rigid bodies as made of 

large numbers of particles and to use the results of Chapter 

14 for the motion of systems of particles.  Specifically,

GG HMamF 
  and

• Results of this chapter will be restricted to:

- plane motion of rigid bodies  

- rigid bodies consisting of plane slabs or bodies which 

are symmetrical with respect to the reference plane.

• D’Alembert’s principle is applied to prove that the external 

forces acting on a rigid body are equivalent a vector 

attached to the mass center and a couple of moment
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16.2 Equations of Motion for a Rigid Body

• Consider a rigid body acted upon 

by several external forces. Why? 

 Not a particle anymore. 

• Assume that the body is made of 

a large number of particles.

• For the motion of the mass center 

G of the body with respect to the 

Newtonian frame Oxyz,

amF




• For the motion of the body with 

respect to the centroidal frame 

Gx’y’z’,

GG HM 


• System of external forces is 

equipollent to the system 

consisting of . and GHam 
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16.3 Angular Momentum of a Rigid Body in Plane Motion

• Consider a rigid slab in 

plane motion.

• Angular momentum of the slab w.r.t G : 
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• Angular momentum of a rotating particle w.r.t O:

• After differentiation,
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Mass Moments of Inertia
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Parallel-axis theorem: The moment of inertia around 

any axis can be calculated from the moment of inertia 

around parallel axis which passes through the center 

of mass. The equation to calculate this is called the 

parallel axis theorem and is given as

I

where d is the distance between the original axis and the axis 

passing through the center of mass, m is the total mass of the 

body, and       is the moment of inertia around the axis 

passing through the center of mass. 

 dmrrmI ii
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Mass Moment of Inertia: 
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Comments on Moment of Inertia

• Serves the same role for rotational motion as mass does for 
linear motion

• But since I=miri
2 is a sum over many objects it depends on 

mass distribution
– If of equal mass, a larger cylinder will have a greater moment of inertia 

than a smaller one. Something intuitively true.

– When mass is far from the axis, it also hard to rotate something, again 
something familiar.

– For rotational motion, the mass of a body cannot be considered as 
concentrated at the center of mass.

• Still it can be extended to the center of mass

• Experimentally done by measuring  for a known t.

GGG IM  )(
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Examples of Mass moment of Inertia

Slender Rod

Rectangular plane

Solid Sphere

Disk

Thin walled hollow disk

Hollow disk

Radius of Gyration:   2mkI 
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16.4 Plane Motion of a Rigid Body: D’Alembert’s Principle

IMamFamF Gyyxx  

• Motion of a rigid body in plane motion is 

completely defined by the resultant and moment 

resultant about G of the external forces.

• The external forces and the collective effective 

forces of the slab particles are equipollent (reduce 

to the same resultant and moment resultant) and 

equivalent (have the same effect on the body).

• d’Alembert’s Principle:  The external forces 

acting on a rigid body are equivalent to the 

effective forces of the various particles forming 

the body.

• One can transform an accelerating rigid body into 

an equivalent static system subjected to 

“effective force” and “effective moment”.  

• One can apply the moment equation w.r.t any 

appropriate point!
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16.5 Axioms of the Mechanics of Rigid Bodies

• The forces act at different points on 

a rigid body but but have the same magnitude, 

direction, and line of action. 

FF

 and 

• The forces produce the same moment about 

any point and are therefore, equipollent 

external forces.

• This proves the principle of transmissibility 

whereas it was previously stated as an axiom.
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16.6 Problems Involving the Motion of a Rigid Body

• The fundamental relation between the forces 

acting on a rigid body in plane motion and 

the acceleration of its mass center and the 

angular acceleration of the body is illustrated 

in a free-body-diagram equation.

• The techniques for solving problems of 

static equilibrium may be applied to solve 

problems of plane motion by utilizing

- d’Alembert’s principle, or

- principle of dynamic equilibrium

• These techniques may also be applied to 

problems involving plane motion of 

connected rigid bodies by drawing a free-

body-diagram equation for each body and 

solving the corresponding equations of 

motion simultaneously.
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Sample Problem 16.1

At a forward speed of 30 m/s, the truck 

brakes were applied, causing the wheels 

to stop rotating.  It was observed that the 

truck to skidded to a stop in 200 m.

Determine the magnitude of the normal 

reaction and the friction force at each 

wheel as the truck skidded to a stop.

SOLUTION:

• Calculate the acceleration during the 

skidding stop by assuming uniform 

acceleration.

• Apply the three corresponding scalar 

equations to solve for the unknown 

normal wheel forces at the front and rear 

and the coefficient of friction between 

the wheels and road surface.

• Draw the free-body-diagram equation 

expressing the equivalence of the 

external and effective forces.
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Sample Problem 16.1
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SOLUTION:

• Calculate the acceleration during the skidding stop 

by assuming uniform acceleration.
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• Draw a free-body-diagram equation expressing the 

equivalence of the external  and effective forces.

• Apply the corresponding scalar equations. 
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Sample Problem 16.2

The thin plate of mass 8 kg is held in 

place as shown.  

Neglecting the mass of the links, 

determine immediately after the wire 

has been cut (a) the acceleration of the 

plate, and (b) the force in each link.

SOLUTION:

• Note that after the wire is cut, all 

particles of the plate move along parallel 

circular paths of radius 150 mm. The 

plate is in curvilinear translation.

• Draw the free-body-diagram equation 

expressing the equivalence of the 

external and effective forces.

• Resolve into scalar component equations 

parallel and perpendicular to the path of 

the mass center.

• Solve the component equations and the 

moment equation for the unknown 

acceleration and link forces.
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Sample Problem 16.2

SOLUTION:

• Note that after the wire is cut, all particles of the 

plate move along parallel circular paths of radius 

150 mm.  The plate is in curvilinear translation.

• Draw the free-body-diagram equation expressing 

the equivalence of the external and effective 

forces.

• Resolve the diagram equation into components 

parallel and perpendicular to the path of the mass 

center.
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Sample Problem 16.3

A pulley weighing 12 N and having a 

radius of gyration of 8 cm is connected to 

two blocks as shown.

Assuming no axle friction, determine the 

angular acceleration of the pulley and the 

acceleration of each block.

SOLUTION:

• Determine the direction of rotation by 

evaluating the net moment on the 

pulley due to the two blocks.

• Relate the acceleration of the blocks to 

the angular acceleration of the pulley.

• Draw the free-body-diagram equation 

expressing the equivalence of the 

external and effective forces on the 

complete pulley plus blocks system.

• Solve the corresponding moment 

equation for the pulley angular 

acceleration.
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Sample Problem 16.3

• Relate the acceleration of the blocks to the angular 

acceleration of the pulley.
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SOLUTION:

• Determine the direction of rotation by evaluating the net 

moment on the pulley due to the two blocks.

rotation is counterclockwise.

      cmN10cm10N5cm6N10 × GM
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Sample Problem 16.4

A cord is wrapped around a 

homogeneous disk of mass 15 kg.  

The cord is pulled upwards with a 

force T = 180 N.

Determine: (a) the acceleration of the 

center of the disk, (b) the angular 

acceleration of the disk, and (c) the 

acceleration of the cord.

SOLUTION:

• Draw the free-body-diagram equation 

expressing the equivalence of the external 

and effective forces on the disk.

• Solve the three corresponding scalar 

equilibrium equations for the horizontal, 

vertical, and angular accelerations of the 

disk.

• Determine the acceleration of the cord by 

evaluating the tangential acceleration of 

the point A on the disk.
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Sample Problem 16.4

SOLUTION:

• Draw the free-body-diagram equation expressing the 

equivalence of the external and effective forces on the 

disk.
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• Solve the three scalar equilibrium equations.
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Sample Problem 16.5

A uniform sphere of mass m and radius 

r is projected along a rough horizontal 

surface with a linear velocity v0.  The 

coefficient of kinetic friction between 

the sphere and the surface is k.

Determine: (a) the time t1 at which the 

sphere will start rolling without sliding, 

and (b) the linear and angular velocities 

of the sphere at time t1.

SOLUTION:

• Draw the free-body-diagram equation 

expressing the equivalence of the 

external and effective forces on the 

sphere.

• Solve the three corresponding scalar 

equilibrium equations for the normal 

reaction from the surface and the linear 

and angular accelerations of the sphere.

• Apply the kinematic relations for 

uniformly accelerated motion to 

determine the time at which the 

tangential velocity of the sphere at the 

surface is zero, i.e., when the sphere 

stops sliding.
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Sample Problem 16.5

SOLUTION:

• Draw the free-body-diagram equation expressing the 

equivalence of external and effective forces on the 

sphere.

• Solve the three scalar equilibrium equations.
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NOTE: As long as the sphere both rotates and slides, 

its linear and angular motions are uniformly 

accelerated.


