Dispersion and its Compensation

Byoungho Lee

School of Electrical Engineering, Seoul National University byoungho@snu.ac.kr

Contents

Dispersion compensation in...

- Optical communication
- Photonic crystal fiber
- Photonic crystal waveguide

Extreme of dispersion in...

Slow Light / Stop Light

Dispersion properties in...

Surface plasmon polaritons & meta-material

Concluding remarks

Newton

Seoul National University

Isaac Newton (1642-1727)

A sketch (left) from Newton's 1672 notebook shows sunlight entering through the window at right, passing through a triangular prism, and splitting into a spectrum of colors. One of the earliest known studies of optics (the science of light and vision) was done by Islamic mathematician Ibn al-Haytham (965–1040), also known as Alhazen. His sketch of lenses is below.

OEQELab

J. Hakim, The Story of Science – Newton at the Center, Smithsonian Books, Washington DC, USA, 2005.

Dispersion

- Dispersion : a phenomenon due to a dependence of the wave's speed on its wavelength that causes the separation of a wave into spectral components with different wavelengths.
 - Chromatic Dispersion
 - Material Dispersion
 - Waveguide Dispersion
 - Modal Dispersion

Spatial dispersion

Temporal dispersion

Control of dispersion

Dispersion compensation / mitigation – removing dispersion

- Optical communication
- Photonic crystal fiber
- Photonic crystal waveguide

Dispersion control – using dispersion

- Photonic crystal fiber
- Photonic crystal waveguides
- Slow light / stop light
- Pulse compression
- Surface plasmon polaritons & meta-material

Seoul National University

Chromatic dispersion in optical fiber

Dispersion engineering in optical fiber

Legacy fibers SMF-28 has dispersion of 17 ps/nm-km @ 1550 nm

Need for dynamic chromatic dispersion compensation

For 40 Gb/s (or more) transmission,

• Communications link will not work if the compensation value does not exactly match the fiber within a few percent of the required dispersion value.

• Dispersion changes with temperature since the zero-dispersion wavelength of fiber changes with temperature at a typical rate of 0.03 nm/°C.

- Inventory management
- Reconfigurable optical networking

A. E. Willner, IEEE LEOS Annual Meeting, Tul1, 2002.

Dispersion Compensation with Chirped Fiber Bragg Gratings

I. Kaminow and T. Li, *Optical Fiber Communications IV B*, Academic Press (2002).

Commercialized Tunable CFBG for CD Compensation

- Highwave Optical Technologies

Optical Specifications	Units	HiLynx T10 (10 Gbit/s systems)	HiLynx T10/40 (10 and 40 Gbit/s systems)
Dispersion tuning range	ps/nm	700 to 1300	400 to 800
Channel Bandwidth (BW)	GHz	Up to 40	Up to 80
Insertion loss (including a circulator)	dB	< 2 dB	
Insertion loss Ripple	dB	< 0.5 dB	
Raw Group Delay Ripple (over full T° range)	ps	< +/-20 ps	< +/-15 ps
Group Delay Ripple (100 pm smoothing avg.)	ps	< +/- 5 ps	< +/- 3 ps
PDL (averaged in BW)	dB	< 0.1 dB	
PMD (averaged in BW)	ps	< 0.5 ps	

Electronic dispersion compensation (EDC)

5120-km RZ-DPSK transmission at 10 Gb/s without optical dispersion compensation

D. McGhan *et al.*, *IEEE Photon. Technol. Lett.*, 18 (2), pp. 400-402, 2006

Electro-optic modulator in transmitter

Fig. 4. Eye diagrams at receiver after propagation on G.652 fiber: (a) back-to-back (0 ps/nm), (b) 1600 km (25760 ps/nm), (c) 3200 km (51520 ps/nm), and (d) 5120 km (82433 ps/nm).

Fig. 5. BER as function of OSNR in 0.1-nm resolution bandwidth. Average launch power: (a) -5 and (b) -7 dBm.

EDC, without optical compensation

1500 km transmission over NZ-DSF without inline or post-compensation of dispersion for 38 x 10.7 Gbps channels

J. D. Downie et al., Electron. Lett., 42 (11), pp. 650-652, 2006.

Seoul National University

Fig. 3 OSNR and O values after transmission over 1500 km

1500km transmission with DCF compensation

EDC, receiver dispersion slope compensation

Fig. 6. Q-factors for 42.8-Gb/s RZ-DPSK (with slope compensation) and CSRZ-DPSK (without slope compensation) after 6250 km.

Seoul National University

Fig. 18. Comparison of parallel and orthogonal launch (CSRZ-DPSK, 100-GHz charnel spacing, 25 × 40 Gb/s over 6250 km).

0.7

Gb/s

Polarization mode dispersion (PMD)

Causes of birefringence

• Intrinsic : Oval waveguide

• Extrinsic : Mechanical stress

Photonic crystal fibers

Photonic crystal fiber (PCF)

Photonic crystal fibers

J. C. Knight, Nature, 424, pp. 847-851, 2003.

Photonic crystal fibers

Dispersion compensation with PCF

A novel design for dispersion compensating photonic crystal fiber Raman amplifier

S. K. Varshney *et al.*, *IEEE Photon. Technol. Lett.*, 17 (10), pp. 2062-2064, 2005.

Photonic crystal fibers

Dispersion compensation with PCF

Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses

K. Saitoh *et al.*, *Opt. Express*, 13 (21), pp. 8365-8371, 2005.

Optimally-flattened-dispersion

Group delay device: dispersion control

Dispersion-controlled optical group delay device by chirped photonic crystal waveguides

OEQELab

Delay device by slowing

Slow light & strong dispersion

Real-space observation of ultraslow light in photonic crystal waveguides

H. Gersen *et al.*, *Phys. Rev. Lett.*, 94, 073903, 2005.

Real-space observation (< c/1000)

Slow & stopping light

Stopping light all optically

M. F. Yanik and S. Fan, *Phys. Rev. Lett.*, 92, 083901, 2004.

OEQELab

Coupled photonic crystal resonator array (CPCRA)

Slow & stopping light

Transmission of slow light through photonic crystal waveguide bends

S. Assefa et al., Opt. Lett., 31 (6), pp. 745-747, 2006.

Dispersion surface

Energy propagation

$$v_g = \partial \omega / \partial \vec{k}$$

Superprism

Superprism effect of photonic crystal

Superprism phenomena in photonic crystals

OEQELab

Superprism

Polymeric superprism

Experimental evidence for superprism effects in three-dimensional polymer photonic crystals

J. Serbin and M. Gu, Adv. Materals., 18, pp. 221-224, 2006.

Negative refraction

All-angle negative refraction

All-angle negative refraction without negative effective index photonic crystal contour C. Luo et al., Phys. Rev. B, vol. 65, 201104, 2002. contour X 0.22 incident beam 0.050 $\partial^2 \omega / \partial k_i \partial k_j$ superlens

Negative refraction

Seoul National University

Negative refraction in meta-material

Surface plasmon polaritons

What is a plasmon?

- "Plasma-oscillation": density fluctuation of free electrons

The Lycurgus Cup (glass) British Museum 4th century A.D.

Green when illuminated from outside and red when illuminated from within the cup due to very small amounts of gold powder about 40 parts per million)

"Labors of the Months" Norwich, England ca. 1480

The ruby color is attributed to gold nanoparticles.

Seoul National University

Confined plasmon in nanoparticle

Dispersion relation of surface plasmon polariton

Surface charges, evanescent fields, and dispersion curve for SP mode

Seoul National University

OEQELab

 k_x

 $\omega = ck$

Surface plasmom

Surface plasmon polaritons

Surface plasmon applications

- SPP Applications
 - Surface sensitive techniques, SPR microscopy
 - SPR technologies and a wide range of
 - photonic ICs.

Waveguides of surface plasmons Surface plasmon Bragg reflectors Bio- and flow-sensors using SPR

'nt transmission enhancement

er beam shaping

Ag Film with hole arrays (Period = 300, 450, 550nm Hole diameter=155,180,225nm)

A. Degiron et al. Appl. Phys. Lett. 81, 4327 (2002).

Plasmonic nanolithography

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, *Nano Letters*, 4 (6), pp. 1085-1088, 2004.

Metal mask : 90nm holes, 170nm period

Surface plasmons

- 1. Much shorter wavelength compared to the excitation light wavelength
- 2. E-field intensity of surface plasmons can be boosted by several orders of magnitude compared to the excitation light

Resonant surface plasmon couplings (SuperLens)

Superlens-based nanopatterning

- A flat plane of NRM behaves as superlens and amplifies evanescent waves in near-field through a series of plasmon resonances.
- This allows super-resolutions below diffraction limit.
- Experimentally achieved improvements in UV range: 5-10x beyond the operating wavelength
- Applicable for direct imaging of evanescent modes, thus for immediate recognition of analytes
- Also applicable for nanopatterning through subwavelength contact lithography

Femto-second surface plasmon

Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film, space-time complex amplitude characterization

R. Rokitski *et al.*, *Phys. Rev. Lett.*, 95, 177401, 2005.

transmittance from nanohole array

Surface plasmon biosensor

Optical biosensor with dispersion compensation

W. Zong *et al.*, *Opt. Lett.*, 30 (10), pp. 1138-1140, 2005.

Comparison of simulation methods

	FDTD	RCWA	PFMA
Domain	Space	Frequency	Frequency
Field representation	Finite-difference method	Piles of truncated 2D- pseudo-Fourier series	Truncated 3D-pseudo- Fourier series
Structure modeling	Mesh-structure	Staircase approximation & piles of 2D-Fourier series	3D-Fourier series (no staircase approximation)
Aperiodic structure Analysis	Yes	No (If using PML, yes)	No (If using PML, yes)
Evanescent field analysis	No (Cannot separate)	Yes	Yes
Modal analysis	No	No	Yes
Computation cost	Very huge	Large	Huge

Seoul National University

Ez

RCWA examples

3D micro-metal-sphere structure (15 level staircase approximation)

Surface plasmon excitation

Finite metal slab structure

Surface plasmon excited by Gaussian beam

At metal surface

Surface plasmon excited by Gaussian pulse beam Seoul National University

At metal surface OEOELab

Surface plasmon excitation by grating coupler

Metal-gap waveguide

Metal-gap waveguide with bottom surface grating

Metal-gap waveguide

Metal-gap waveguide with upper surface grating

Holographic lithography

Seoul National University

TIR holography simulation – rigorous electromagnetic analysis

OEQELab

RCWA analysis of near field around a tip

OEQELab

RCWA analysis of near field around a tip

Perspectives : Plasmonics

□ Transistor gate size : ~ 50 nm, Light wavelength: ~1,000 nm

□ Plasmonics? – Surface plasmon-based photonics

Challenges (E. Ozbay, Science, vol. 311, pp. 189-193, 2006)

- Demonstrate optical frequency subwavelength metallic wired circuits with propagation loss comparable to conventional waveguides
- Develop highly efficient plasmonic organic and inorganic LEDs with tunable radiation properties
- Achieve active control of plasmonic signals by implementing electrooptic, all-optical, and piezoelectric modulation and gain mechanisms to plasmonic structures
- Demonstrate 2D plasmonic optical components, including lenses and grating couplers, that can couple single mode fiber directly to plasmonic circuits
- Develop deep subwavelength plasmonic nanotithography over large surfaces

Concluding remarks

 Brief review on recent research trends on the dispersion and its compensation

