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Isaac Newton 

(1642-1727)

J. Hakim, The Story of Science – Newton at the Center, 

Smithsonian Books, Washington DC, USA, 2005.

Newton
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Dispersion

• Dispersion : a phenomenon due to a dependence of the wave's 
speed on its wavelength that causes the separation of a wave into 
spectral components with different wavelengths.

Chromatic Dispersion
• Material Dispersion
• Waveguide Dispersion 

Modal Dispersion

Spatial dispersion Temporal dispersion
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Control of dispersion

Dispersion compensation / mitigation – removing dispersion

• Optical communication
• Photonic crystal fiber
• Photonic crystal waveguide

Dispersion control – using dispersion

• Photonic crystal fiber
• Photonic crystal waveguides
• Slow light / stop light
• Pulse compression
• Surface plasmon polaritons & meta-material
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Chromatic dispersion in optical fiber
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Dispersion engineering in optical fiber

Optical communication
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For 40 Gb/s (or more) transmission,

• Communications link will not work if the compensation value does 
not exactly match the fiber within a few percent of the required 
dispersion value.

• Dispersion changes with temperature since the zero-dispersion 
wavelength of fiber changes with temperature at a typical rate of     
0.03 nm/oC.

• Inventory management

• Reconfigurable optical networking

A. E. Willner, IEEE LEOS Annual Meeting, TuI1, 2002.

Need for dynamic chromatic dispersion compensation

Optical communication
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Dispersion Compensation with Chirped Fiber Bragg 
Gratings

I. Kaminow and T. Li, Optical Fiber 
Communications IV B, Academic Press (2002).

CFBGs reflect different frequency 
components at different locations

within the grating. 

They can be used for dispersion compensation 
when the time delay for the grating is the 

inverse of the delay caused by dispersion of a 
transmission line.

Normalized reflectivity and time delay for a 
linearly CFBG.

Oscillatory and random ripple should be 
minimized for the best system performance.

Optical communication
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Commercialized Tunable CFBG for CD Compensation 
- Highwave Optical Technologies 

Optical communication
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Electronic dispersion compensation (EDC)

5120-km RZ-DPSK transmission at 10 
Gb/s without optical dispersion 
compensation 

D. McGhan et al., IEEE Photon. Technol. 
Lett., 18 (2), pp. 400-402, 2006

Optical communication

Electro-optic modulator in transmitter
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EDC, without optical compensation

900km transmission w/o optical compensation 1500km transmission with DCF compensation

1500 km transmission over NZ-DSF without in-
line or post-compensation of dispersion for 38 
x 10.7 Gbps channels

J. D. Downie et al., Electron. Lett., 42 (11), 
pp. 650-652, 2006.

Optical communication
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EDC, receiver dispersion slope compensation 

Transmission of 40-Gb/s WDM signals over 
transoceanic distance using conventional NZ-DSF 
with receiver dispersion slope compensation 

J.-X. Cai et al., J. Lightwave Technol., 24 (1), 
pp. 191-200, 2006

Optical communication
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Polarization mode dispersion (PMD)

Ideal Real

Core

Cladding
Fast axis

Slow axis

Fast

Slow

Δτ

Δτ
Signal Distortion!! 

1st Order PMD

Optical communication
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Elliptical
Core

Ideal
Non Symmetric Stress

Elliptical
Cladding

• Intrinsic  : Oval waveguide

• Extrinsic : Mechanical stress

Geometrical Stress

Lateral
Stress

Band

Twist

Causes of birefringence

Optical communication
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• Multiple concatenation of randomly oriented 
birefringent elements

Realistic model of fiber PMD

Optical communication
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Photonic crystal fiber (PCF)

Photonic crystal fibers

Photonic crystal fibers

J. C. Knight, Nature, 424, pp. 847-851, 2003.
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Dispersion compensation with PCF

Photonic crystal fibers

A novel design for dispersion 
compensating photonic crystal fiber 
Raman amplifier

S. K. Varshney et al., IEEE Photon. Technol. 
Lett., 17 (10), pp. 2062-2064, 2005.

Highly-negative dispersion 
for the fundamental mode

Flattened gain by Raman 
amplification
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Dispersion compensation with PCF

Photonic crystal fibers

K. Saitoh et al., Opt. Express, 13 (21), 
pp. 8365-8371, 2005.

Ultra-flattened chromatic dispersion 
controllability using a defected-core photonic 
crystal fiber with low confinement losses

Lattice constant variation Cladding diameter variation Core diameter variation

Optimally-flattened-dispersion
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Group delay device: dispersion control

Delay device by slowing

D. Mori and T. Baba, Appl. Phys. Lett., 85 (7), 
pp. 1101-1103, 2004.

Slow light

Dispersion-controlled optical group delay 
device by chirped photonic crystal 
waveguides

Leff = 45μm
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Slow light & strong dispersion

Real-space observation (< c/1000)

Slow light

H. Gersen et al., Phys. Rev. Lett., 94, 073903, 
2005.

Real-space observation of ultraslow 
light in photonic crystal waveguides
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Slow & stopping light

M. F. Yanik and S. Fan, Phys. Rev. Lett., 92, 
083901, 2004.

Stopping light all optically

Slow light



OEQELabSeoul National University

Coupled photonic crystal resonator array 
(CPCRA)

Slow light

: modified CPCRA

: simle CPCRA

Simple arrangement Modified arrangement
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Slow & stopping light

Slow light

Transmission of slow light through photonic 
crystal waveguide bends

S. Assefa et al., Opt. Lett., 31 (6), pp. 745-747, 2006.

slow light regime
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Dispersion surface
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Energy propagation
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Superprism effect of photonic crystal 

Superprism

Superprism phenomena in photonic crystals

H. Kosaka et al., Phys. Rev. B,  58 (16), 
R10096, 1998.
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Polymeric superprism

J. Serbin and M. Gu, Adv. Materals., 18, pp. 221-224, 2006.

Experimental evidence for superprism 
effects in three-dimensional polymer 
photonic crystals 

Superprism
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All-angle negative refraction

C. Luo et al., Phys. Rev. B, vol. 65, 
201104, 2002.

Negative refraction

All-angle negative refraction without negative 
effective index

superlens
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Negative refraction in meta-material

Negative refraction
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What is a plasmon?
− “Plasma-oscillation”: density fluctuation of free electrons

The Lycurgus Cup (glass)
British Museum
4th century A.D.

“Labors of the Months” 
Norwich, England

ca. 1480

+ + +

- - -

+ - +

k

Bulk
plasmon 

Surface
plasmon 

Confined plasmon
in nanoparticle

Green when illuminated from outside and 
red when illuminated from within the cup 
due to very small amounts of gold powder 
about 40 parts per million)

The ruby color is attributed to 
gold nanoparticles.

Surface plasmon polaritons

Surface plasmon polaritons
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- Dispersion of SP

- Propagation length, δSP
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ex) for silver-air interface, δSP =20 μm

md

md

md

md
SP c

kk
εε
εεω

εε
εε

+
=

+
= 0

( )
m

m

dm

dm

SP
SP

c
k ε

ε
εε
εε

ω
δ

′′
′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′
+′

=
′′

=
22

3

2
1

die2
metal

die1

die2
metal

die1

bound mode radiation mode

z

x
d

1 2 1 2

1 2 1 2

1 1 1 1 exp( 2 )m z m z m z m z
zm

zm zm zm zm

k k k k k d
k k k k

ε ε ε ε
ε ε ε ε
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞

+ + = − − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

Dispersion relation of surface plasmon polariton

Surface plasmon polaritons
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Surface plasmom

Surface plasmon polaritons
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SPP Applications
- Surface sensitive techniques, SPR microscopy
- SPR technologies and a wide range of 

photonic ICs.
Waveguides of surface plasmons
Surface plasmon Bragg reflectors
Bio- and flow-sensors using SPR
Light transmission enhancement
Laser beam shaping

Surface plasmon applications

A. Degiron et al. Appl. Phys. Lett. 81, 4327 (2002).

Ag Film with hole arrays
(Period   =  300, 450, 550nm
Hole diameter=155,180,225nm)

J. C. Weeber et al., Phys. Rev. B 64, 045411(2001).

40 nm thick, 2.5 μm wide gold stripe 
lying on a glass substrate

2.5 μm

30 μm

Surface plasmon polaritons
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Plasmonic nanolithography

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang,
Nano Letters, 4 (6), pp. 1085-1088, 2004.

Surface plasmons
1. Much shorter wavelength compared to the excitation light wavelength
2. E-field intensity of surface plasmons can be boosted by several orders of magnitude 

compared to the excitation light 

Metal mask : 90nm holes, 170nm period

Surface plasmon polaritons
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Resonant surface plasmon couplings (SuperLens)

Superlens-based nanopatterning

- A flat plane of NRM behaves as superlens and amplifies evanescent waves in near-field 
through a series of plasmon resonances.

- This allows super-resolutions below diffraction limit.
- Experimentally achieved improvements in UV range: 5-10x beyond the operating wavelength
- Applicable for direct imaging of evanescent modes, thus for immediate recognition of analytes
- Also applicable for nanopatterning through subwavelength contact lithography

UV exposure (365nm)

2d

Thin silver film

X. Zhang (UC Berkeley)

Surface plasmon polaritons



OEQELabSeoul National University

Femto-second surface plasmon

Propagation of femtosecond surface plasmon 
polariton pulses on the surface of a 
nanostructured metallic film, space-time 
complex amplitude characterization

R. Rokitski et al., Phys. Rev. Lett., 
95, 177401, 2005.

transmittance from nanohole array

converging diverging

Surface plasmon polaritons
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Surface plasmon bio sensor 

Surface plasmon biosensor

Optical biosensor with dispersion 
compensation 

W. Zong et al., Opt. Lett., 30 (10), 
pp. 1138-1140, 2005.
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Comparison of simulation methods

FDTD RCWA PFMA

Domain Space Frequency Frequency

Field representation Finite-difference 
method

Piles of truncated 2D-
pseudo-Fourier series

Truncated 3D-pseudo-
Fourier series

Structure modeling Mesh-structure Staircase 
approximation & piles 
of 2D-Fourier series

3D-Fourier series
(no staircase 

approximation)

Aperiodic structure
Analysis

Yes No 
(If using PML, yes)

No
(If using PML, yes)

Evanescent field
analysis

No (Cannot separate) Yes Yes

Modal analysis No No Yes

Computation cost Very huge Large Huge

Simulations
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RCWA examples

3D micro-metal-sphere structure (15 level staircase approximation)  

EyEyEzEz

ExEx

Simulations
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Finite metal slab structure  

x y

At metal surface

x y

2σs=2μm 2σt=2fs T=50fs

x

z

2σs=2μm

20μmSurface
plasmon

Damping
radiation

Surface plasmon excited by Gaussian beam

Surface plasmon excited by Gaussian pulse beam At metal surface

Surface plasmon excitation

Simulations
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Air

Ag 40nm

n=2

n=0.7

Regenerated surface plasmon

50μm

Plasmonics

Surface plasmon excitation by grating coupler

Simulations
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Metal-gap waveguide with bottom surface grating

λ=532nm, TM

grating period / width / height 
= 500nm / 250nm / 80nm

x

z
Ag clad

n=1.52

surface grating flat surface

Reflection is
decreased

Metal-gap waveguide

Simulations
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Metal-gap waveguide with upper surface grating

λ=532 nm, TM

Ag clad

x

z
n=1.52

grating period / width / height 
= 500 nm / 250 nm / 80 nm

Surface grating

Flat surface

Metal-gap waveguide

Simulations
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Holographic lithography

Reconstructing : TM

Cr mask 

0.5㎛

0.5㎛

10 λ

2 λ

Cr mask 

0.5㎛

0.5㎛

10 λ

2 λ Reconstructing : TE

Cr mask 

0.5㎛

0.5㎛

10 λ

2 λ

Cr mask 

0.5㎛

0.5㎛

10 λ

2 λ

Recording : TE
2 λ2 λ

Cr mask Cr mask 

0.5㎛

0.5㎛

10 λ

0.5㎛

0.5㎛

10 λ

Cr mask 

0.5㎛

0.5㎛

10 λ

2 λ

Cr mask 

0.5㎛

0.5㎛

10 λ

2 λRecording : TM

TIR holography simulation – rigorous electromagnetic analysis
Recording
(TM Polarization)

Recording
(TE Polarization)

Reconstructing
(TM Polarization)

Reconstructing
(TE Polarization)

phase-conjugation reading beam

TMTE

Cr mask

object beam

TMTE

writing beam

Reconstructing 

Recording 

Simulations
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RCWA analysis of near field around a tip

2μm
6μ

m

ncore
=1.76

nclad=1.46

x

z

-4 -3 -2 -1 0 1 2 3 4

x 10
-6

0

1

2

3

4
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6

7
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9

x 10
-6

500 layers

• Dielectric tip structure

Simulations
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RCWA analysis of near field around a tip

• Metal coated tip structure

2μm

1μm

ncore
=1.46

nclad
=1.40

45
.0
˚

Ag 50nm

Intensity

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 10
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1.5
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2.5
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3.5
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-6 Intensity
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1.5

2

2.5
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3.5
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4.5

5

x 10
-6

Without metal coating With metal coating
500 layers staircase
approximation

Simulations
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Perspectives : Plasmonics

Transistor gate size : ~ 50 nm,     Light wavelength: ~1,000 nm

Plasmonics? – Surface plasmon-based photonics

Challenges (E. Ozbay, Science, vol. 311, pp. 189-193, 2006)
- Demonstrate optical frequency subwavelength metallic wired circuits with
propagation loss comparable to conventional waveguides

- Develop highly efficient plasmonic organic and inorganic LEDs with 
tunable radiation properties

- Achieve active control of plasmonic signals by implementing electro-
optic, all-optical, and piezoelectric modulation and gain mechanisms to 
plasmonic structures

- Demonstrate 2D plasmonic optical components, including lenses and 
grating couplers, that can couple single mode fiber directly to plasmonic 
circuits

- Develop deep subwavelength plasmonic nanotithography over large 
surfaces

Surface plasmon polaritons
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Concluding remarks

• Brief review on recent research trends on the 
dispersion and its compensation
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