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Introduction

• Bit rate of a single channel in WDM system tends to 

increase.

• Polarization mode dispersion (PMD) turns out to be the 

ultimate obstacle to the bit rate increase.

• Power penalty due to the PMD increases quadratically as 

the bit rate increases.

• Due to the higher-order components and the stochastic 

characteristics of the PMD, each channel in WDM 

system needs to be compensated separately in dynamic 

manner.

• To fully understand the PMD representation methods, 

some theoretical (mathematical) background is needed.
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• DGD Δτ : Differential group delay between two polarization modes
• The effect of PMD in a digital communication system
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Origins of PMD

• PMD caused by local birefringence of the fiber

- The intrinsic fiber core eccentricity

- The stress induced by environmental factors 

cΔnlΔτ =
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Elliptical
Core

Ideal
Non Symmetric Stress

Elliptical
Cladding

• Intrinsic  : Oval waveguide

• Extrinsic : Mechanical stress

Geometrical Stress

Lateral
Stress

Band

Twist

Causes of Birefringence
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Realistic Model of Fiber

• Multiple concatenation of randomly oriented 
birefringent elements
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Polarized Light – Jones Vector

• For TEM waves, E field is represented by
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• Bra-ket notation of Jones vector
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Polarized Light – Stokes Vector

• Poincare sphere & Stokes vector
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Relation between Jones Vector 
and Stokes Vector

• 2 X 2 Pauli spin matrix
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• Stokes vector vs. Jones vector

321isss ii ,,        , == σ

• Pauli spin vector
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Properties of Pauli Spin Matrices I

       , 1−++ == iiii σσσσ
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Properties of Pauli Spin Matrices II

- For Hermitian matrices, the coefficients are real.

• Trace of a matrix

σσσσ rr
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• Any 2 x 2 matrix may be expanded with Pauli spin matrices 
and identity matrix
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Properties of Pauli Spin Matrices III

• Some practical usage of Pauli spin vector
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Transmission Matrices

• Assuming no polarization-dependent loss exists and fiber’s 
loss is factored out, we can describe a fiber with a unitary 
transmission matrix.

• 2 x 2 Jones matrix

• 3 x 3 Mueller matrix

sUesTt 0jφ==

sRt ˆˆ =

tt  ss ˆ   ,                          ˆ    , 
T,U,R
Fiber link
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Unitary, Hermitian Matrices

• Definition of unitary matrix

where + denotes Hermitian conjugate.

• Definition of Hermitian matrix

- Hermitian matrices have all real eigenvalues.

( ) 1det      , ==+ MIMM

+= MM
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Property of Transmission Matrix I

• Projection operator

• Dot products
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Property of Transmission Matrix II

• Conservation of dot products

i0i0 qTqpTp ==    ,
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- Dot products of vectors are conserved during transmission 
through fiber.

- Therefore, the transmission through fiber is represented by a 
rotation of the Stokes vectors.
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Connection between U and R
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Rotational Form of Jones Matrix I

• Recall projection operator

• Consider a pair of orthogonal Jones vectors            , and 
corresponding Stokes vectors 

_, pp
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- Any pair of orthogonal vectors forms a complete orthogonal set 
in Jones space.
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Rotational Form of Jones Matrix II

• Since UU+=I  and det(U)=1,  the eigenvalues of U must be of unit 
magnitude and their product must be unity.

• Consequently

• Recalling the projection operator, we can rewrite

• From the property of Pauli spin matrix
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Rotational form in Stokes Space
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Poincare Sphere Representation of R

• The behavior of birefringence is described by a rotation on the 
Poincare sphere.

( )×== reRsRt ˆ        ,ˆˆ ϕ

Retarder

δϕ
λ
πδ =Δ=      ,2 nl

P

H

R

O

V

L

Eigenmode



Seoul National University NRL  HoloTech

PMD Vector

• Contents

- Frequency dependency of output SOP

- Concept of PSP

- Jones matrix eigenvector analysis

- Pauli spin vector expansion

- Mueller matrix expression

- Input PMD vector

- Evolution of PMD vector
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Frequency Dependency of Output SOP I

• Single birefrengent element

τω
λ
π

λ
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- If an input SOP is aligned to the eigenmode, the output SOP does not vary with optical 
frequency.
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Frequency Dependency of Output SOP II

• Two birefrengent elements

- Eigenmode varies with optical frequency.

- There exist input/output SOPs that are invariant with optical frequency to first-order.
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Frequency Dependency of Output SOP III

• Multiple birefrengent elements: fiber link

• Question : Are there such input/output SOPs that are invariant with optical 
frequency to first-order even in fiber link? If so, how can we find them?

f

f
f f f

s
s

ss
s



Seoul National University NRL  HoloTech

Principal State of Polarization

• It has been found empirically that there always exist such SOPs 
that are invariant with optical frequency to first-order when 
traveling through linear birefringent medium.

SMF output  PSPinput  PSP
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Jones Matrix Eigenvector Analysis I

• Eigenvalue equation from the definition of PSP
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Jones Matrix Eigenvector Analysis II

• jUwU+ is a Hermitian matrix.
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• A Hermitian matrix has real eigenvalues and their eigenvectors 
are orthogonal.

• Frequency expansion of U

- Since det(U(w))=det(U(w+dw))=1, Tr(UwU+) should be zero.

( ) ( )UUUdIUdUdU   ++=+=+ ωω ωωωω
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Jones Matrix Eigenvector Analysis III

• Therefore, eigenvalues of jUwU+ are given by 

• Now, we have two orthogonal PSP’s ⏐p>, ⏐p_> whose relative 
delays are  

• The directions of PSPs do not vary with frequency to first-order.

• PMD vector is defined as

• The magnitude of PMD vector is differential group delay (DGD) 
between the slow and the fast PSPs, and its direction represents 
the slow PSP.

( ) 2 0 τττ ±=−g

p̂ττ =
r

.2,2 ττ −

p̂τ=Ω
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Pauli Spin Matrix Expansion

If we expand jUwU+ with Pauli spin vector, we obtain              
since

• Previously, we know that

• Substituting the Pauli spin vector expansion into the eigenvalue 
equation, we obtain

• This implies

• Consequently, we obtain
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Mueller Matrix Expression I
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• From                   , we obtain  

• From                 , we obtain

• Substituting the first equation in the second one and using the 
properties of Pauli spin vector, we obtain
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Mueller Matrix Expression II

• Mueller Matrix vs. PMD vector
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Input PMD vector

• From the output PSP and output PMD vector, input PSP and 
input PMD vector are defined as

• Matrix operator transform through transmission matrix.

• Transmission matrix vs. input PMD vector
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Implication of PMD vector

• PMD vector

• For small signal bandwidth, 
spectral resolved output SOP 
will form a part of circle about 
the PMD vector.
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Meaning of PSP
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If the PSPs are known, the SMF can be treated as a simple birefringent 
medium to first-order.
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PMD Vector Concatenation

• Concatenation of two PMD elements
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Evolution of PMD vector
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Dynamic Equation for PMD vector
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- W is a randomly varying birefringence vector.

- The statistical behavior of the PMD can be described by solving the 
dynamic equation with the martingale differential equation method. 
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PMD vs. fiber length
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High-Order PMD
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Autocorrelation of PMD

• Frequency autocorrelation of PMD vector

• 3dB bandwidth of the autocorrelation function

- First-order approximation of PMD is valid when the signal 
bandwidth is much smaller than BPMD.
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Correlation between All Orders of PMD
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• The mean square value of the (n+1)th order of PMD is 

proportional to the (n+1)th power of    

- The high order PMD increases very rapidly with fiber 
length.

( ) 20Ω
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High-Order PMD vs. Distance
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Frequency Dependency of PMD

DGD vs. wavelength
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Summary

• Mathematical description of polarized light 

propagation and PMD have been discussed.

• This mathematical description forms basics 

for understanding PMD representations for 

optical communication systems.
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