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* Introduction
* Propagation of polarized light & SOP
* PMD vector
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INntroduction

. Bit rate of a single channel in WDM system tends to
increase.

« Polarization mode dispersion (PMD) turns out to be the
ultimate obstacle to the bit rate increase.

. Power penalty due to the PMD increases quadratically as
the bit rate increases.

« Due to the higher—order components and the stochastic
characteristics of the PMD, each channel in WODM
system needs to be compensated separately in dynamic
manner.

« To fully understand the PMD representation methods,
some theoretical (mathematical) background is needed.
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PMD

DGD At : Differential group delay between two polarization modes
The effect of PMD in a digital communication system
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Origins of PMD

* PMD caused by local birefringence of the fiber
— The intrinsic fiber core eccentricity
— The stress induced by environmental factors

—

At =4nl /c
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causes of Birefringence

e Intrinsic : Oval waveguide
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Realistic Model of Fiber |

* Multiple concatenation of randomly oriented
birefringent elements

R DO ) akede

t t

At (PMD)

Random Polarization Mode Coupling  ean sq. dev.

%@K Seoul National University NRL HoloTech



Polarized Light — Jones Vector

 For TEM waves, E field is represented by
E:f(t)( ’¢’“x+a e )7)

« Complex Jones vector

J¢ Ay Sy * *
J¢ -  E=f(t) i SeSy +5,5, =1
a,e Sy y

* Bra—ket notation of Jones vector

() et

Sy
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* Poincare sphere & Stokes vector

2 2
_a, —a, x
Sl—a 7 =58, —5,8,
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o 2 X 2 Pauli spin matrix

I 0 0 1
G]: , 0'2: ,
0 -1 I 0

e Stokes vector vs. Jones vector

s>, i=123

S, = <S‘Gi

* Pauli spin vector

65(0,,02,0'3) )

O;

Il
TN
~.

S |
.
.

S = <S‘5‘S>

%@K Seoul National University

NRL HoloTech



ProEerties of Pauli SEin Matrices | |
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Properties of Pauli Spin Matrices 11

* Any 2 x 2 matrix may be expanded with Pauli spin matrices
and identity matrix

M=a, +a,0,+a,0,+a,0,=a,l+a-o

ag = ;Tr(M), a; = ;Tr(aiM)

— For Hermitian matrices, the coefficients are real.

e Trace of a matrix

Tr(M):Zi:mii :Zi:ﬂ’i
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Properties of Pauli Spin Matrices 111

« Some practical usage of Pauli spin vector
(sld-&ls)=d-(s|g]s)=a-§
<S‘Zi X 5“S> = a % <S‘5“S> —axs

e

<S‘R5“S> = R<S‘&‘S> = Rs
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Transmission Matrices

« Assuming no polarization—dependent loss exists and fiber’s
loss is factored out, we can describe a fiber with a unitary
transmission matrix.

e 2 X 2 Jones matrix

1)=T]s)=0]s)

* 3 x 3 Mueller matrix
{ = RS

‘ >’ 3,‘ Fiber link ‘f>,

’ LUR
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Hermitian Matrices

* Definition of unitary matrix

MM* =1, det(M)=1

where * denotes Hermitian conjugate.

* Definition of Hermitian matrix

M=M"

— Hermitian matrices have all real eigenvalues.
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ProEertz of Transmission Matrix | |

* Projection operator

:sx * *:SXS; st; :1] ~ _
[ Je )2 ) Sea
where S = <S‘5“S>

5)=5-3s)

* Dot products

(pla)glp) = %(1 +p-q)

If <p|q>:0 ie., |p>J_|q>, then p=-—q
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Property of Transmission Matrix 11

 Conservation of dot products

2)=T\p,). |90)=T|4;)
qz‘>:<pi Qi> ( T+T:I)
1 1

From (qilp;}{pila;) == (I + i -d;). {a0lpo)(polao) =1+ Po-do)

ﬁo‘éo :ﬁi'éi

T'T

(Plas) = (P,

— Dot products of vectors are conserved during transmission
through fiber.

— Therefore, the transmission through fiber is represented by a
rotation of the Stokes vectors.
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Rotational Form of Jones Matrix | |

* Recall projection operator

s)(s|= %(1 +5§-G), where §= <S‘5‘S>

. Consider a pair of orthogonal Jones vectors |2).|p_), and
corresponding Stokes vectors ». —p.

(p_|p)=0

Ppl=5 1+ 5-6) [p_)p_|=5(1-p-5)
p)pl+lp )P _|=1

— Any pair of orthogonal vectors forms a complete orthogonal set
in Jones space.
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Rotational Form of Jones Matrix |1

» Since UU*=l and det(U)=1, the eigenvalues of { must be of unit
magnitude and their product must be unity.

« Consequently
U= e_j¢/2‘r><r‘ + ej(”/z‘r_><r

where ‘r> and ‘r_> are eigenvectors (and <r_‘r>=0).

* Recalling the projection operator, we can rewrite

U =1cos(p/2)- jr-&sin(p/2)

* From the property of Pauli spin matrix

U — o /027G
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Rotational form In Stokes Saace |

U*6U =(cosp)5 + (1 -cosp)i(7-6)+ (sinp)rx &
From Ro=U"cU

R =(cos)I +(1—cos )i +(sin @) x = 77 + (sin @)7 x —(cos @ )7 x )(7 )

Y nr nt Nl 0 -r, n
where rr=|r, (7”1,1”2,7"3): e, L, L rx=\r, 0 -—r
v VTR N S N r, T 0

Using (FxNix)=—1+7F, (Fx)Fx)Fx)=—Fx

R = e¢(fx)
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Poincare Sphere Representation of R

 The behavior of birefringence is described by a rotation on the
Poincare sphere.

f=Rs, R=e"™

Retarder

A

27
o =—-2Anl, =0
) @

Eigenmode
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« Contents
— Frequency dependency of output SOP
— Concept of PSP
— Jones matrix eigenvector analysis
— Pauli spin vector expansion
— Mueller matrix expression
— Input PMD vector

— Evolution of PMD vector
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Frequency Dependency of Output SOP |

* Single birefrengent element L

Half—wave plate

A
2 2mc Anl
O=—A~Anl=——=wAt
A A ¢ R
A0 = AwAT
— If an input SOP is aligned to the eigenmode, the output SOP does not vary with optical
frequency.
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Frequency Dependency of Output SOP 11

 Two birefrengent elements

Two quarter—wave plates

<
~ W / H

Eigenmode Principle state of polarization

R R

- Eigenmode varies with optical frequency.

- There exist input/output SOPs that are invariant with optical frequency to first-order.
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Frequency Dependency of Output SOP 111

* Multiple birefrengent elements: fiber link

GO OW OE )R )
D E - X

» Question : Are there such input/output SOPs that are invariant with optical
frequency to first-order even in fiber link? If so, how can we find them?
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al State of Polarization

* |t has been found empirically that there always exist such SOPs
that are invariant with optical frequency to first—order when
traveling through linear birefringent medium.

input PSP SMF output PSP

- \N g = ) LA
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Jones Matrix Eigenvector Analysis |

 Eigenvalue equation from the definition of PSP

D [0y 2B Ut

Let |t)=e7"?|(1]))

‘t>=e_j¢0U

For PSP,
dp d
0, == L) =221 - |(6), =)
| d d
Then (r, —1o)t)= jU,U|t), where t, zﬁ’fo =dia?

- 19 ISsacommon delay and z, isa group delay.
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Jones Matrix Eigenvector Anal

« jULU" is a Hermitian matrix.
UU" =1
u),=0 = v,U =-UvU;
L juUt =-juut =(juur)

A Hermitian matrix has real eigenvalues and their eigenvectors
are orthogonal.

 Frequency expansion of U
Ulw+do)=U+doU, =(I+doU,U" U
— Since det(U(w))=det(U(w+du))=1, Tr(UwU*) should be zero.
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Jones Matrix Eigenvector Analysis 111

 Therefore, eigenvalues of jUwU* are given by

(rg —70)=%7/2
- Now, we have two orthogonal PSP’s |p>, |p_> whose relative
delays are 7/2, —17/2.

* The directions of PSPs do not vary with frequency to first—order.

* PMD vector is defined as

« The magnitude of PMD vector is differential group delay (DGD)

between the slow and the fast PSPs, and its direction represents
the slow PSP,
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IN Matrix Expansion

. . C o 1
= |f we expand jUwU* with Pauli spin vector, we obtain jURU =§a'0
since 7r(ju,ut)=o0.

« Previously, we know that

, 1

jUU"p)=77p)
« Substituting the Pauli spin vector expansion into the eigenvalue
equation, we obtain

- -

a-G|\p)=1/p)

« This implies a=m="7

1. .

- Consequently, we obtain | ;{7 U™ = Ef.g
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Mueller Matrix ExEression [ |

« From |t)=e/"U

s), we obtain

. : I .
1) =—jle,+ jULU )‘t>=—](ro+5r-aj‘t>

. From ¢ = <t|&| t>, we obtain

[ =1, 61)+(1l6(1)),

* Substituting the first equation in the second one and using the
properties of Pauli spin vector, we obtain

e

{ =Txt

Q)
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INnput PMD vector

* From the output PSP and output PMD vector, input PSP and
input PMD vector are defined as

i) =T"\po) T, =R"7

* Matrix operator transform through transmission matrix.

M,=TMT*

* Transmission matrix vs. input PMD vector

7.-o=U"7,-cU=2;U"U,
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lication of PMD vector

Qutput PSP+
P Q

« PMD vector Input PSP+ |
?""h*-.:\.

.
® S,

Input SOP

Os A
aomzfxsout
)

* For small signal bandwidth,

spectral resolved output SOP

will form a part of circle about
the PMD vector.

Output PSP-

Input PSP-
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Meaning of PSP

P ) SMF B)
S;)
e Q ) o)
in+>
130ut+>
Eout (t) = c+ pout+>Ein(t + %j + C_ pout—>Ein (t B %j
where
Ein :Ein ein>’ Ci :<pini ein>

If the PSPs are known, the SMF can be treated as a simple birefringent
medium to first—order.

%@K Seoul National University NRL HoloTech



PMD Vector Concatenation

 Concatenation of two PMD elements

- R]’ T] - RZ’ TZ -

Rtot =RyRy
Frorx = (RoRy) (RyRy) ™ = RyRy™ + RyRuRT Ry ™ = (7, + Ry 7y )
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Evolution of PMD vector
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Dvnamic Equation for PMD vector

— Wis a randomly varying birefringence vector.

— The statistical behavior of the PMD can be described by solving the
dynamic equation with the martingale differential equation method.
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PMD vs. fiber len

2
2 A _
(A7) =<T2>—<T> = '82 (e 2hz _14 2hz)
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Hiéh-Order PMD |

7(Aw)=7"+7 VA0 +7

where 7" denotes (n+1)th order PMD

Output PSP+
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Autocorrelation of PMD

» Frequency autocorrelation of PMD vector

ol o) = 5 1o - e |

« 3dB bandwidth of the autocorrelation function

0.64

By
UpGp

— First—order approximation of PMD is valid when the signal
bandwidth is much smaller than Beyp
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Correlation between All Orders of PMD |

(Q"(@)- Q" @) =0

[ ()- Q") (w)) = (2n)! <‘Q >n+1

3"(n+1)!
« The mean square value of the (n+1)th order of PMD is

— The high order PMD increases very rapidly with fiber
length.
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<|PMD|™2>

h-Order PMD vs. Distance
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Freauencz Deéendencz of PMD |

Wavsiength reacived DGO-giol

RS o
j ~= PHND 250

1531 1592 1832 T 4% 1.596

DGD vs. wavelength
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Summary |

e Mathematical description of polarized light
propagation and PMD have been discussed.

 This mathematical description forms basics
for understanding PMD representations for
optical communication systems.
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