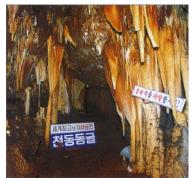

## 지하공간과 에너지


에너지자원과 미래 2008.11.11

송재준



#### Origin of underground works

#### 지하공간의 창조자?



석회암 동굴 (단양)

Lava tube (하와이)

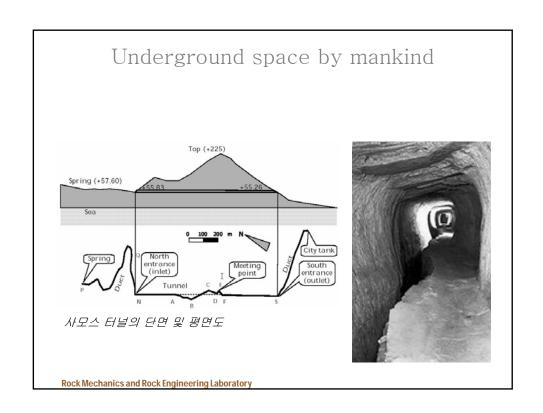
Rock Mechanics and Rock Engineering Laboratory

#### Underground space by mankind

인류의 지하공간 개발: 주거지, 광산, 매장, 창고...

고대 (로마제국 이전)

- Bomvu Ridge mine (B.C. 40,000): 네안데르탈인, 적철광
- Drainage tunnel (B.C. 2,800): 아카드 도시(Akkad city), 아치형 터널, 구운벽돌, 역청
- Underwater tunnel (B.C. 2,000): 유프라테스 강 하저 Semiramis 궁과 Jove 신전사이, 1km 연장, 3.6m x 4.5m, 벽돌과 역청, 개착식공법
- Royal tombs: 메소포타미아 Ur 지역 (B.C. 2,500), 이집트 Theb and Abu Simbel (B.C. 1,250), 주로 석회암 또는 사암지역


#### Underground space by mankind

● 수로터널: 이스라엘 실로암(B.C. 715), 연장 533m, 1m x 2m 그리스 사모스 섬 (B.C. 525), 1.8m x 1.8m





···The day the opening was made, the stonecutters hacked toward each other, pick against pick. And the water flowed from the source to the pool [twel]ve hundred cubits (despite the fact that) the height of the rock above the stonecutters' heads was one hundred cubits.'



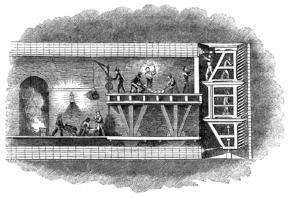
#### Underground space by mankind

#### 로마제국 패망 후

● 운하터널: 영국 Bridgewater 운하 (1761), Worsley의 석탄광산과 Manchester의 산업지대를 연결



**Rock Mechanics and Rock Engineering Laboratory** 


#### Underground space by mankind

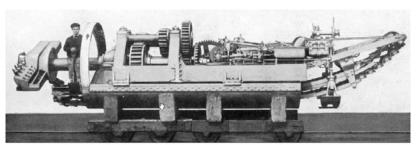
● 알프스산맥 관통 터널: Frejus 터널(1857~1870), 프랑스와 이태리 연결, 연장 13km, 압축공기에 의한 천공, 후반기에 에 니트로 글리세린 폭약 적용.



#### Underground space by mankind

● 쉴드터널: 영국템즈강 하저 (1823 ~ 1843)

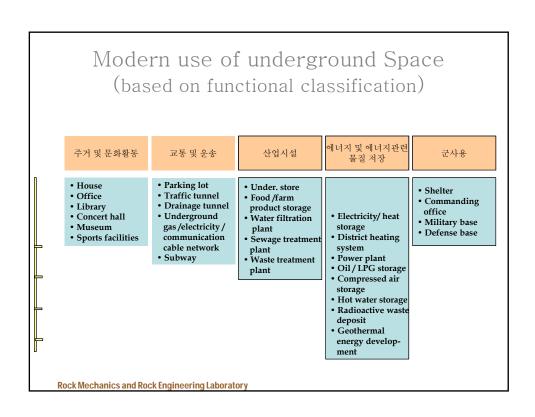





템즈강하저 쉴드터널 공사 개요도

**Rock Mechanics and Rock Engineering Laboratory** 

#### Underground space by mankind


● Tunnel Boring Machine: *C.F. Beaumont* 개발(1875), 후에 C.T. English가 발전시킴. 운하터널공사에 시험적으로 적용후 본격적 활용, Abbotscliff 터널(800m) tunnel, 셰익스피어 석탄광산 근처 하저터널(1,100m, 1882).



Beaumont machine, 1882. First attempt to drive a tunnel beneath the English Channel.

# Modern use of underground Space (based on functional classification)

- 주거 및 문화활동 용도
- 교통 및 운송
- 산업시설
- 에너지 및 에너지관련물질 저장
- 군사용



#### Characteristics of underground space

- 열, 음파, 방사능, 전자기파 불투수성
- 내진동 및 내충격성
- 비연소성
- 화학적 안정성

**Rock Mechanics and Rock Engineering Laboratory** 

# Characteristics of underground space

- 열, 음파, 방사능, 전자기파 불투수성
  - 높은 열용량: 열전달속도가 지상공간의 10%~20%, 지상에서 5m 이상내려가면 지상온도영향 거의 없음
  - 읖파차단성: 무음향실 건설에 유리
  - 방사능 물질의 암반내 이동속도가 매우 낮음. 일부는 암반에 흡수됨.
  - 암석은 전자기파 전도성이 매우 작음.

#### Characteristics of underground space

#### ● 내진동 및 내충격성

- (신선한) 암반은 높은 강도와, 낮은 변형성, 높은 밀도로 인해 지진이나 폭발등의 외부 진동 및 충격에 덜 영향을 받음.
- 암석강도는 방호시설의 요구내압강도(9 bar = 0.1 MPa)보다 매우 높음.

**Rock Mechanics and Rock Engineering Laboratory** 





1995년 고베지진



4층건물 지하 15m에서 시공중인 마이코 터널

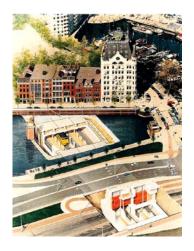
Rock Mechanics and Rock Engineering Laboratory

#### Characteristics of underground space

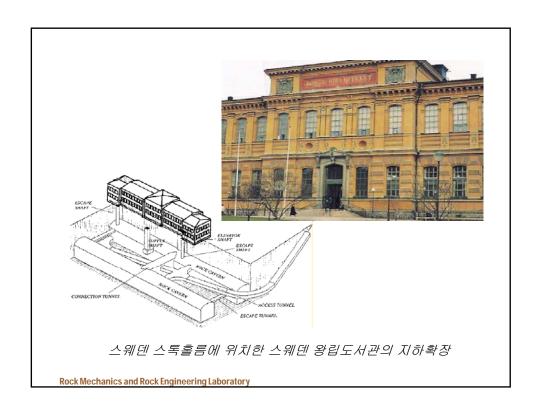
- 비연소성
- 화재의 확산이 제한됨
- 가연성 물질의 저장/보관에 유리

#### Characteristics of underground space

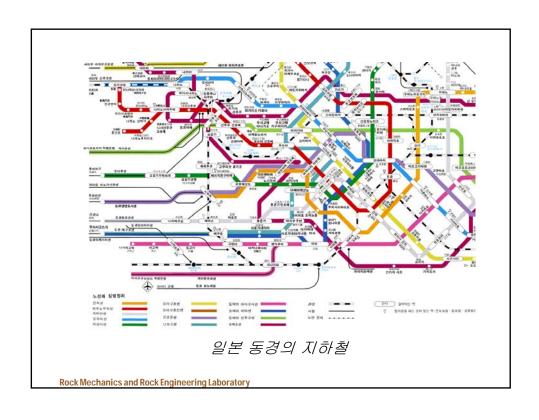
- 화학적 안정성
- 암반의 주요 구성성분의 하나인 규산염 광물은 산과 알칼리용액에 강함


**Rock Mechanics and Rock Engineering Laboratory** 

#### Reason for going underground


- 국토 활용성 증대
- 환경보호
- 지상의 지형적 제한성 극복
- 외부로부터의 격리성

#### Reason for going underground

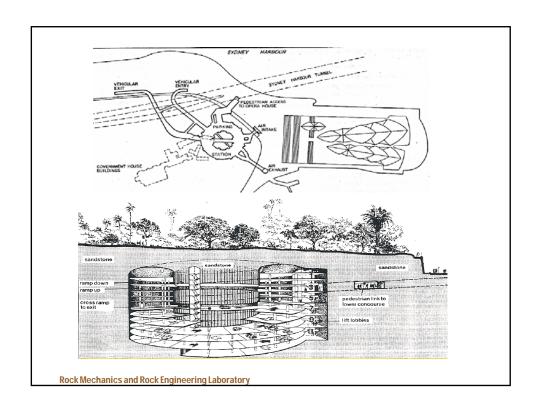

#### ● 국토 활용성 증대

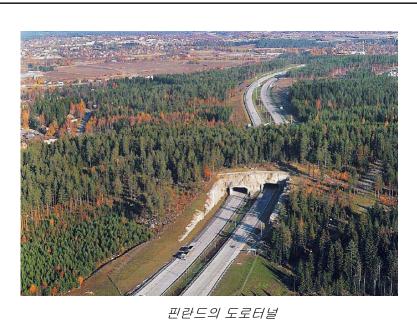


네덜란드 로테르담의 Blaak 역사



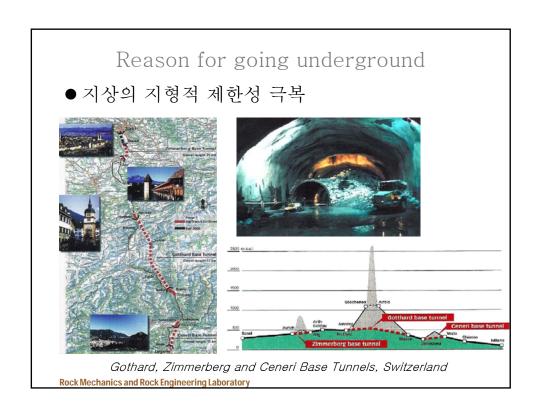


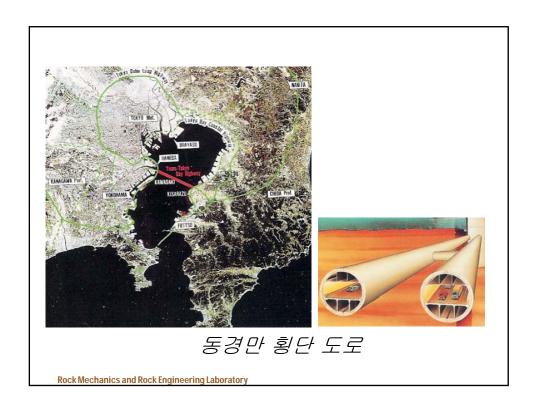


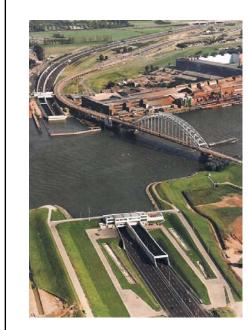




### Reason for going underground

● 환경보호




(green bridge for people, animals and even vegetation)









네덜란드 암스테르담의 Noord 터널

#### Reason for going underground

● 외부로부터의 격리성



핀란드 북극권(위도66° 33′)에 위치한 산타클로스 마을의 크리스마스 테마공원

Rock Mechanics and Rock Engineering Laboratory





러시아 우랄에 위치한 알러지치유전문 지하병원 (칼륨염 광산 개조)

#### Disadvantage of going underground

- 어둡고 폐쇄된 공간 적절한 조명, 환기, 습도조절이 필요함
- 정신적 영향 방향감각상실, 폐쇄공포증, 메아리...

**Rock Mechanics and Rock Engineering Laboratory** 

# Factors for successful development of underground space

- 사회과학적 요인 사회적 수요, 법적 지원, 경제성 평가, 인간과 환경에 대한 영향
- 공학기술적 요인 지반조사 및 분석기술 암반 굴착기술 암반구조물 유지 기술 환경영향 조정 기술 안전대책 지하구조물 운영기술