

Chapter 5

Service Design

Operations Management - 6th Edition

Roberta Russell & Bernard W. Taylor, III

Copyright 2009 John Wiley & Sons, Inc.

Beni Asllani University of Tennessee at Chattanooga

Lecture Outline

- Service Economy
- Characteristics of Services
- Service Design Process
- Tools for Service Design
- Waiting Line Analysis for Service Improvement

Service Economy

Nation	% World Labor	% Agriculture	% Goods	% Services	2006
China	21.0	50	15	35	
India	17.0	60	17	23	30 - (A) Agriculture:
U.S.	4.8	3	27	70	60 - (G) Goods:
Indonesia	3.9	45	16	39	40 20 - (S) Services:
Brazil	3.0	23	24	53	
Russia	2.5	12	23	65	1800 1850 1900 1950 2000 20
Japan	2.4	5	25	70	
Nigeria	2.2	70	10	20	
Bangledesh	2.2	63	11	26	
Germany	1.4	3	33	64	

Source: U.S. Bureau of Labor Statistics, IBM Almaden Research Center

Copyright 2009 John Wiley & Sons, Inc.

Characteristics of Services

- Services
 - acts, deeds, or performances
- Goods
 - tangible objects
- Facilitating services
 - accompany almost all purchases of goods
- Facilitating goods
 - accompany almost all service purchases

Continuum from Goods to Services

Source: Adapted from Earl W. Sasser, R.P. Olsen, and D. Daryl Wyckoff, Management of Service Operations (Boston: Allyn Bacon, 1978), p.11. Copyright 2009 John Wiley & Sons, Inc.

Characteristics of Services (cont.)

- Services are intangible
- Service output is variable
 - Services have higher customer contact
- Services are perishable

- Service inseparable from delivery
- Services tend to be decentralized and dispersed
- Services are consumed more often than products
- Services can be easily emulated

Service Design Process (cont.)

- Service concept
 - purpose of a service; it defines target market and customer experience
- Service package
 - mixture of physical items, sensual benefits, and psychological benefits
- Service specifications
 - performance specifications
 - design specifications
 - delivery specifications

Service Process Matrix

High v. Low Contact Services

Design	High-Contact Service	Low-Contact Service
 Facility locatio n 	 Convenient to customer 	 Near labor or transportation source
• Facility layout	 Must look presentable, accommodate customer needs, and facilitate interaction 	 Designed for efficiency

Source: Adapted from R. Chase, N. Aquilano, and R. Jacobs, *Operations Management for Compensative Advantage* (New York:McGraw-Hill, 2001), p. 210

High v. Low Contact Services (cont.)

Design Decision	High-Contact Service	Low-Contact Service
 Quality control 	 More variable since customer is involved in process; customer expectations and perceptions of quality may differ; customer present when defects occur 	 Measured against established standards; testing and rework possible to correct defects
Capacity	 Excess capacity required to handle peaks in demand 	 Planned for average demand

Source: Adapted from R. Chase, N. Aquilano, and R. Jacobs, *Operations Management for Compensative Advantage* (New York:McGraw-Hill, 2001), p. 210

Copyright 2009 John Wiley & Sons, Inc.

High v. Low Contact Services (cont.)

Design Decision	High-Contact Service	Low-Contact Service
Worker skills	 Must be able to interact well with customers and use judgment in decision making 	 Technical skills
 Scheduling 	 Must accommodate customer schedule 	 Customer concerned only with completion date

Source: Adapted from R. Chase, N. Aquilano, and R. Jacobs, *Operations Management for Compensative Advantage* (New York:McGraw-Hill, 2001), p. 210

High v. Low Contact Services (cont.)

Design Decision	High-Contact Service	Low-Contact Service
 Service process 	 Mostly front-room activities; service may change during delivery in response to customer 	 Mostly back- room activities; planned and executed with minimal interference
 Service package 	 Varies with customer; includes environment as well as actual service 	 Fixed, less extensive

Source: Adapted from R. Chase, N. Aquilano, and R. Jacobs, *Operations Management for Compensative Advantage* (New York:McGraw-Hill, 2001), p. 210

Tools for Service Design

- Service blueprinting
 - line of influence
 - line of interaction
 - line of visibility
 - line of support
- Front-office/Backoffice activities

- Servicescapes
 - space and function
 - ambient conditions
 - signs, symbols, and artifacts
- Quantitative techniques

Service Blueprinting

Service Blueprinting (Con't)

Elements of Waiting Line Analysis

- Operating characteristics
 - average values for characteristics that describe performance of waiting line system
- Queue
 - a single waiting line
- Waiting line system
 - consists of arrivals, servers, and waiting line structure
- Calling population
 - source of customers; infinite or finite

Elements of Waiting Line Analysis (cont.)

- Arrival rate (λ)
 - frequency at which customers arrive at a waiting line according to a probability distribution, usually Poisson
- Service time (µ)
 - time required to serve a customer, usually described by negative exponential distribution
- Service rate must be shorter than arrival rate ($\lambda < \mu$)
- Queue discipline
 - order in which customers are served
- Infinite queue
 - can be of any length; length of a **finite** queue is limited

Elements of Waiting Line Analysis (cont.)

- Channels
 - number of parallel servers for servicing customers
- Phases
 - number of servers in sequence a customer must go through

Operating Characteristics

 Operating characteristics are assumed to approach a steady state

Notation	Operating Characteristic
L	Average number of customers in the system (waiting and being served)
L_q	Average number of customers in the waiting line
W	Average time a customer spends in the system (waiting and being served)
W_q	Average time a customer spends waiting in line
P_0	Probability of no (i.e., zero) customers in the system
P _n	Probability of <i>n</i> customers in the system
ρ	Utilization rate; the proportion of time the system is in use

Traditional Cost Relationships

• as service improves, cost increases

Copyright 2009 John Wiley & Sons, Inc.

Psychology of Waiting

- Waiting rooms
 - magazines and newspapers
- Bank of America
 - mirrors
- Supermarkets
 - magazines
 - "impulse purchases"

- televisions

- Disney
 - costumed characters
 - mobile vendors
 - accurate wait times

Psychology of Waiting (cont.)

- Preferential treatment
 - Grocery stores: express lanes for customers with few purchases
 - Airlines/Car rental agencies: special cards available to frequent-users or for an additional fee
 - Phone retailers: route calls to more or less experienced salespeople based on customer's sales history
- Critical service providers
 - services of police department, fire department, etc.

 waiting is unacceptable; cost is not important Copyright 2009 John Wiley & Sons, Inc.

Waiting Line Models

- Single-server model
 - simplest, most basic waiting line structure
- Frequent variations (all with Poisson arrival rate)
 - exponential service times
 - general (unknown) distribution of service times
 - constant service times
 - exponential service times with finite queue
 - exponential service times with finite calling

population Copyright 2009 John Wiley & Sons, Inc.

Basic Single-Server Model

- Assumptions
 - Poisson arrival rate
 - exponential service times
 - first-come, firstserved queue discipline
 - infinite queue length
 - infinite calling population

- Computations
 - λ = mean arrival rate
 - µ = mean service
 rate
 - n = number of customers in line

Basic Single-Server Model (cont.)

probability that no customers are in queuing system
 λ

$$P_0 = \left(1 - \frac{\pi}{\mu}\right)$$

• average number of customers in queuing system $\mathcal{L} = \frac{\lambda}{\mu - \lambda}$

- probability of *n* customers in queuing system $P_n = \begin{pmatrix} \lambda \\ - \end{pmatrix} \cdot P_0 = - \end{pmatrix} 1 - \mu$ $\mu \qquad \mu \qquad \mu$ Copyright 2009 John Wiley & Sons, Inc.
 - average number of customers in waiting line $\mathcal{L}_{q} = \frac{1}{\mu (\mu - \lambda)}$

Basic Single-Server Model (cont.)

 average time customer spends in queuing system

$$W = \frac{1}{\mu - \lambda} = \frac{L}{\lambda}$$

 average time customer spends waiting in line

$$W_q = \frac{\lambda}{\mu (\mu - \lambda)}$$

 probability that server is busy and a customer has to wait (utilization factor)

$$\rho = \frac{\lambda}{\mu}$$

 probability that server is idle and customer can be served 1 - ρ

$$=1-\frac{\lambda}{\mu}=P_0$$

Basic Single-Server Model Example

$$P_0 = \left(1 - \frac{\lambda}{\mu}\right) = \left(1 - \frac{24}{30}\right)$$

= 0.20 probability of no customers in the system

$$L = \frac{\lambda}{\mu - \lambda} = \frac{24}{30 - 24}$$

= 4 customers on the average in the queuing system

$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{(24)^2}{30(30 - 24)^2}$$

= 3.2 customers on the average in the waiting line Copyright 2009 John Wiley & Sons, Inc.

$$W = \frac{1}{\mu - \lambda} = \frac{1}{30 - 24}$$

= 0.167 hour (10 minutes) average time in the system per customer

$$W_q = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{24}{30(30 - 24)}$$

= 0.133 hour (8 minutes) average time in the waiting line per customer

$$\rho = \frac{\lambda}{\mu} = \frac{24}{30}$$

= 0.80 probability that the server will be busy and the customer must wait $I~=1-~\rho~=1-~0.80$

= 0.20 probability that the server will be idle and a customer can be served

Service Improvement Analysis

- waiting time (8 min.) is too long
 - hire assistant for cashier?
 - increased service rate
 - hire another cashier?
 - reduced arrival rate
- Is improved service worth the cost?

Basic Single-Server Model Example: Excel

Copyright 2009 John Wiley & Sons, Inc.

Advanced Single-Server Models

- Constant service times
 - occur most often when automated equipment or machinery performs service
- Finite queue lengths
 - occur when there is a physical limitation to length of waiting line
- Finite calling population
 - number of "customers" that can arrive is limited

Advanced Single-Server Models (cont.)

Basic Multiple-Server Model

- single waiting line and service facility with several independent servers in parallel
- same assumptions as single-server model
- *s*μ > λ
 - s = number of servers
 - servers must be able to serve customers faster than they arrive

probability that there are no customers in system

$$\int_{n=0}^{n=s-1} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^{n} + \frac{1}{s!} \left(\frac{\lambda}{\mu}\right)^{s} \left(\frac{s\mu}{s\mu - \lambda}\right)^{s}$$

Probability of *n* customers in system $P_{n} = \begin{cases} \frac{1}{s!s^{n-s}} \left(\frac{\lambda}{\mu}\right)^{n} P_{0}, & \text{for n > s} \\ \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^{n} P_{0}, & \text{for n ≤ s} \end{cases}$

probability that customer must wait

$$P_{w} = \frac{1}{s!} \left(\frac{\lambda}{\mu}\right) \frac{s}{s\mu - \lambda}$$

$$L_a = L - \frac{\lambda}{\mu}$$

Copyright 2009 John Wiley & Sons, Inc.

5-38

Basic Multiple-Server Model Example

- $\lambda = 10$ students per hour
- $\mu = 4$ students per hour per service representative
- s = 3 service representatives

 $s\mu = (3)(4) = 12 \ (> \lambda = 10)$

$$\begin{split} P_{0} &= \frac{1}{\left[\sum_{n=0}^{n-s-1} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^{n}\right]} + \frac{1}{s!} \left(\frac{\lambda}{\mu}\right)^{s} \left(\frac{s\mu}{s\mu - \lambda}\right)}{\left[\frac{0}{0!} \left(\frac{10}{4}\right)^{0} + \frac{1}{1!} \left(\frac{10}{4}\right)^{1} + \frac{1}{2!} \left(\frac{10}{4}\right)^{2}\right]} + \frac{1}{3!} \left(\frac{10}{4}\right)^{3} \frac{3(4)}{3(4) - 10}} \end{split}$$

= 0.045 probability that no customers are in the health service.

$$L = \frac{\lambda \mu (\lambda/\mu)^{s}}{(s-1)!(s\mu - \lambda)^{2}} P_{0} + \frac{\lambda}{\mu}$$

= $\frac{(10)(4)(10/4)^{3}}{(3-1)![3(4) - 10]^{2}} (0.045) + \frac{10}{4}$
= 6 students in the health service
$$W = \frac{L}{\lambda}$$

= $\frac{6}{10}$
= 0.60 hour or 36 minutes in the health service

$$L_{d} = L - \frac{\lambda}{\mu}$$

= $6 - \frac{10}{4}$
= 3.5 students waiting to be served
$$W_{q} - \frac{L_{q}}{\lambda}$$

= $\frac{3.5}{10}$
= 0.35 hour or 21 minutes waiting in line

$$P_{w} = \frac{1}{s!} \left(\frac{\lambda}{\mu}\right)^{s} \frac{s\mu}{s\mu - \lambda} P_{0}$$
$$= \frac{1}{3!} \left(\frac{10}{4}\right)^{3} \frac{3(4)}{3(4) - (10)} (0.045)$$

= 0.703 probability that a student must wait for service (i.e., that there are three or more students in the system)

- To cut wait time, add another service representative
 - now, s = 4
- Therefore:
 - $P_0 = 0.073$ probability that no students are in the health service
 - L = 3.0 students in the health service
 - W = 0.30 hour, or 18 minutes, in the health service
 - $L_q = 0.5$ students waiting to be served
 - $W_q = 0.05$ hour, or 3 minutes, waiting in line
 - $P_w = 0.31$ probability that a student must wait for service

Multiple-Server Waiting Line

n Fyce		Aicrosoft Excel - I	Exhibit 5 3								
	1.1	Eile Edit View	Insert Format 1	jools <u>D</u> a	ta <u>W</u> indov	v <u>H</u> elp i	Ado <u>b</u> e PDF				
	: 🗅	💕 🖬 🖪 🔒 I		2 - 1 -	- 8	5 - 2	🏨 🔞	Arial		- 10	- B
		D9 -	fx =(1)/(VLOC	KUP(D6	G18 H36	2)+((1/FA0	CT(D6))*((D4/D5)^D6))*(([D6)*(D5))/	(((D6)*(D5))-(D4)))
		A B	C	D	E	F	G	н	1	J	K
	1	A Multiple-Ser	ver Waiting Line	e Syster	m						
	2		-	-							
	3	Input:				(Innut the	amiunt				
	4	Arrival rate = 10 per hour		rate service							
	5		Service rate =	4	per hour	rate, service					
	6		No. of servers, s =	3		numt	per of				
	7					serv	rers.)				
	8	Output:				_		0			
	9		P a =	0.045							
	10		P * =	0.702	I						
	11	Average number	in the system (L) =	6.01							
	12	Average number	in the queue (Lq) =	3.51							
	13	Average time	n the system (W) =	36.07	minutes						
	14	Average time i	n the queue (wg) =	21.07	minutes						
	15										
	10	Multiple Sam	and Marchel		1	I	0	Summation			
	10	Munple-Serv	er Model				1	1 0000			
	10		1	i i			2	3.5000			
	20	P ₀	$=\frac{1}{\left[n-s-1+1/2\right]^{n}}$	1/1/1/	su)		2	6.6250			
	21		$\sum \frac{1}{n!} \left(\frac{h}{n!}\right) +$		$\left(\frac{m}{1-1}\right)$		4	9.2292			
	22		[#=0 *** (** /]	3. (r) (.	$\mu = \kappa$		5	10.8568			
	23						6	11.6706			
	24	()	(x)"				7	12.0097			
	25		$\frac{1}{n-s}\left(\frac{R}{\mu}\right)P_0$, for $n \ge 1$	> s			8	12,1308			
	26	$P_n = \begin{cases} 0 \\ 1 \end{cases}$	(x)".				9	12.1686			
	27	<u>n!</u>	$\left(\frac{\pi}{\mu}\right) P_0$, for $n =$	$\leq s$		-	10	12.1791			
	28		1				11	12.1817			
	29	$P_{m} = \frac{1}{2} \left(\frac{1}{2} \right)^{2}$	$\frac{\lambda}{2} \frac{s\mu}{2} P_{0}$				12	12.1823			
	30	s! (i	$\mu / s\mu - \lambda^{-0}$				13	12.1825			
	31		λμ(λ/μ) ^s	λ			14	12.1825			
	32	$L = \frac{1}{(s - s)}$	$1)!(s\mu - \lambda)^2 P_0 + 1$	μ			15	12.1825			_
	33	i					16	12.1825			
	34	$W = \frac{L}{\lambda}$					17	12.1825			
	35	^					18	12.1825			
	36	$ L_a = L -$	<u>λ</u>				19	12.1825			
	37	4	μ				20	12.1825			

Copyright 2009 John Wiley & Sons, Inc.

All rights reserved. Reproduction or translation of this work beyond that permitted in section 117 of the 1976 United States Copyright Act without express permission of the copyright owner is unlawful. Request for further information should be addressed to the Permission Department, John Wiley & Sons, Inc. The purchaser may make back-up copies for his/her own use only and not for distribution or resale. The Publisher assumes no responsibility for errors, omissions, or damages caused by the use of these programs or from the use of the information herein.