Chapter 12. Approaches to Hazardous Waste Minimization, Remediation, Treatment, and Disposal

1. Concepts of Waste Minimization and Pollution Prevention (p. 547)

- a) hazardous waste management (Fig. 12.1)
 - source reduction
 - volume reduction
 - recycling
 - treatment and disposal
- b) shift in paradigm
 - from "end-of-pipe treatment"
 - to "waste minimization (reduction)", "pollution prevention (P2)"

2. Concepts in Hazardous Waste Remediation and Treatment (p. 551)

- a) Ex situ and in situ processes
- b) removal or treatment of source materials

- Fig. 12.5

- c) effect of sorption
 - sorbed contaminants are physically unavailable (but not always)
 - therefore, desorption rate limits the treatment efficiency
 - desorption rate is a function of a mass transfer coefficient and a concentration gradient

$$-\frac{dC}{dt} = K(C_s - C)$$

 $-\frac{dC}{dt}$; contaminant degradation rate (mg/L-sec)

K; a mass transfer coefficient (sec⁻¹)

 $C_s{:}$ contaminant saturation conc. in aqueous phase (mg/L)

C; measured contaminant conc. (mg/L)

- two possible cases (Fig. 12.6)
 - . slowly desorbed contaminants
 - . slowly degraded contaminants
- rebound effect (Fig. 12.7)
 - . pump-and-treat system
 - . usually due to the presence of $\ensuremath{\mathsf{DNAPLs}}$

3. Reactor Analysis Applied to Hazardous Waste Systems (p. 557)

4. Classification of Remediation and Treatment Processes (p. 560)

4.1. Sorption processes (p. 560)

- 1) Granular activated carbon (GCA)
 - a) an excellent sorbent
 - high surface area (1000-1400 m²/g)
 - hydrophobic surfaces
 - highly porous; macropores and micropores (Fig. 12.12 & Fig. 13.3)
 - b) gravity-flow GAC system (Fig. 12.13)
- 2) Ion exchange
 - a) usually for metal removal
 - b) types of exchange resins
 - for cation exchange; acidic resins (e.g., SO₃⁻, COO⁻)
 - for anion exchange; basic resins (e.g., NH₃⁺)
- 3) Stabilization
 - a) addition of materials to hazardous wastes -> less mobile and less toxic
 - b) stabilization; addition of reagents to reduce the potential contaminant migration and toxicity
 - c) solidification; modification of a liquid or slurry waste to a solid material by adding solids or other reagents
 - portland cement
 - organiclays
 - d) vitrification; melting and entrapment
- 4) Soil washing and thermal desorption
 - a) methods to enhance desorption
 - b) soil washing
 - ex situ process
 - generally use water-surfactant solution
 - . surfactant micelles sorb hydrophobic contaminants (Fig. 12.14)
 - need to collect and treat washed-out (desorbed) contaminants
 - $% \left({{{\left({{{\left({{{\left({{{\left({1 \right)}}} \right.} \right)}_{c}}} \right)}_{c}}}} \right)$ of other transformation processes
 - soil flusing; in situ soil washing
 - c) thermal desorption
 - use heat (<550°C) to enhance desorption (and volatilization)
 - need to collect and treat the volatilized contaminants
 - , biofiltration or other transformation processes

4.2. Volatilization processes (p. 564)

- 1) Air stripping
 - a) effective for volatilized contaminants
 - remove ammonia, sulfur dixoide, hydrogen sulfide from water
 - b) not strippable compounds

- contaminants less volatile than water; dieldrin, benzo(a)pyrene,...
- highly water-soluble contaminants; acetone,...
- c) Henry's law constant is a good predictor
 - H' (dimensionless; H/RT) \geq 0.01 –> air stripping effective
- 2) Soil vapor extraction (SVE)
 - a) widely used to remove VOCs from the vadose zone (Fig. 12.16)
 - b) place a vacuum on the soil to promotes the volatilization of contaminants
 - c) need to collect and treat the volatilized contaminants
 - d) important variables
 - soil permeability/porosity
 - contaminant volatility

4.3. Abiotic transformation processes (p. 567)

- hydrolysis, photolysis, oxidation-reduction
- Advanced Oxidation Processes (AOPs)
 - . ozone
 - . UV + ozone
 - . hydrogen peroxide +ozone
 - . UV +hydrogen peroxide
 - . Fenton's reagent (hydrogen peroxide +Fe2+)
 - . titanium dioxide-mediated photocatalysis
 - . "cost" is the primary disadvantage in AOPs
- 1) Reactants in AOPs
 - a) major reactants; hydrogen peroxide, ozone, UV light
 - b) hydrogen peroxide
 - relatively stable (stabilized form available also)
 - produces hydroxyl radicals
 - c) ozone
 - unstable (must be generated on site)
 - reacts more slowly than hydroxyl radicals

O oxidation mechanism by ozone

- direct reaction; O3 directly oxidize organics
- indirect reaction; free radicals reaction (O₃ decomposes to hydroxyl radicals at higher pH, catalyzed by OH⁻)

 $O_3 + OH^- \rightarrow O_3^- + OH^\bullet$ $OH^\bullet + RH \rightarrow R^\bullet + H_2O$ $R^\bullet + O_2 \rightarrow RO_2^\bullet$ $RO_2^\bullet + RH \rightarrow ROOH + R^\bullet$

- 2) Hydrogen peroxide/ozone
 - a) $H_2O_2 + 2O_3 \rightarrow 2OH + 3O_2$
 - b) primary initiator of ozone decomposition; HO_2^- (hydroperoxide ion) $H_2O_2 \rightleftharpoons HO_2^- + H^+$
 - c) hydroperoxide ion reacts rapidly with ozone to produce hydroxyl radicals $O_3 + HO_2^- \rightarrow OH^{\bullet} + O_2^- + O_2$ $k = 2.2 \times 10^6 M^{-1} sec^{-1}$
- 3) UV/ozone
 - a) $O_3 + H_2O --(hv) --> H_2O_2 + O_2$ $H_2O_2 --(hv) --> 2OH \bullet$
 - b) $O_3 --(hv)--> O_2 + O \bullet$ $O \bullet + H_2O_2 --> 2OH \bullet$
 - c) mechanism b) is predominant than mechanism a) since the photochemical decomposition of hydrogen peroxide is slow

O Example 12.1

- 4) Supercritical water oxidation
 - a) supercritical water
 - generated at temperatures and pressures above the critical point (374.2°C and 218.4 atm)
 - no phase boundary exists between liquid water and water vapor (a single phase with properties of both liquid water and water vapor)
 - b) supercritical water acts as an organic solvent
 - organic contaminants are highly solubilized and partition into it
 - c) "The same conditions that promote the formation of supercritical water also enhance the potential for molecular oxygen to oxidize organic contaminants"
 - thermodynamically, molecular oxygen can oxidize organics, but not easily observed because the reaction rate is too slow (kinetic reason)
 - in supercritical water, kinetics of oxygen molecules become rapid, and most contaminants are oxidized within minutes

4.4. Biotic porcesses (p. 572)

- 1) In situ bioremediation (Fig. 12.19)
 - a) "microbial degradation is the major removal mechanism from the env."
 - b) by promoting microbial growth and metabolism
 - c) low cost, complete biodegradation (minerlaization)
 - d) difficult to control, mass transfer limitation
 - e) intrinsic bioremediation vs. engineered bioremediation
 - f) bioaugmentation; inoculates degrading microorganisms
 - g) biostimulation; provides nutrients (organics, inorganics)

- h) terminal electron acceptor
 - O_2 for aerobic, most common and efficient
 - delivery through injection well
 - . compressed air, compressed pure oxygen, oxygenated water
 - . stabilized hydrogen peroxide

 H_2O_2 --(catalase)--> H_2O + 1/2 O_2

 H_2O_2 --(Fe³⁺)--> H_2O + 1/2O₂

- i) in most cases, organic contaminants themselves are electrom donors
 - exception) for TCE treatment through cometabolism in groundwater

4.5. Bioventing (p. 574)

- a) a process similar to SVE, but different in many ways
 - aerobic biodegradation (SVE is just a desorption process)
 - minimal contaminants emmisions
- b) highly effective for hydrocarbons (e.g., BTEX), ineffective for highly oxidized contamiants such as PCE, PCBs

4.6. Landfarming (p. 575)

- bioremediation of surface soils
- develops a high microbial biomass by supplying nutrients and oxygen
- organic contaminants serve as the carbon and energy source

4.7. Thermal processes-incineration (p. 575)

- high operation and capital cost, but effective means
- incomplete burning -> harmful chemicals (e.g., dioxins)

4.8. Other treatment operations and processes

- a) air sparging; in situ volatilization process, applied to groundwater
- b) phytoremediation; use vascular plants, applied to heavy metals, nitroaromatics (e.g., TNT),...
- c) Permeable Reactive Barrier (PRB)
 - in situ process in groundwater
 - zero valent iron
- d) Monitored Natural Attenuation (MNA)
 - intrinsic bioremediation
 - monitored by geochemical indicators
- e) treatment processes in series
 - Example 12.2

5. Ultimate Disposal-Hazardous Waste Landfills (p. 578)

-The End-