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Optimization problem:

min f0(x)
s.t. fi (x) ≤ 0, i = 1, · · · ,m

hj(x) = 0, j = 1, · · · , p.

Decision variables: x ∈ Rn

Objective function: f0(x)

Constraints (inequality and equality): fi (x) ≤ 0 and hj(x) = 0.

Domain of problem: D =
m⋂

i=0

domfi ∩
p⋂

j=1

domhj

x ∈ D is feasible if it satisfies all constraints; infeasible, otherwise.
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Optimal value: p∗ = inf{f0(x)|fi (x) ≤ 0,∀i , hj(x) = 0,∀j}.

Optimal point: x∗ is optimal point if x∗ is feasible and f0(x
∗) = p∗.

Denote by Xopt the set of optimal points.

A feasible x is an ε-suboptimal point if f0(x) ≤ p∗ + ε.

A feasible x is locally optimal if ∃R > 0 s.t.
f0(x) = inf{f0(z)|fi (x) ≤ 0,∀i , hj(x) = 0,∀j , ||z − x ||2 ≤ R}

Feasibility problem: “Find x satisfying all the constraints.”
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Expressing problems in standard form

Standard form: Min-version

min f0(x)
s.t. fi (x) ≤ 0, i = 1, · · · ,m

hj(x) = 0, j = 1, · · · , p.

Standard form: Max-version

max f0(x)
s.t. fi (x) ≥ 0, i = 1, · · · ,m

hj(x) = 0, j = 1, · · · , p.
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Equivalent problems

We say two problems are equivalent if, given a solution of one, we can
efficiently find a solution of the other, and vice versa.

Example

Two problems are equivalent if αi > 0, ∀i , βj 6= 0, ∀j :

min f0(x) min α0f0(x)
s.t. fi (x) ≤ 0, ∀i s.t. αi fi (x) ≤ 0, ∀i

hj(x) = 0, ∀j βjhj(x) = 0, ∀j
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Change of variables

Suppose φ : Rn → Rn is one-to-one mapping. Define f̃i (x) = fi (φ(x))
and h̃j(x) = hj(φ(x)) Then the following two problems are equivalent:

min f0(x)
s.t. fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

min f̃0(x)

s.t. f̃i (x) ≤ 0, i = 1, . . . ,m

h̃i (x) = 0, i = 1, . . . , p.
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Transformation of obj. and const. functions

Suppose that ψ0 : R→ R is monotone increasing, ψ1, . . . , ψm : R→ R satisfy
ψi (u) ≤ 0 if and only if u ≤ 0, and ψm+1, . . . , ψm+p : R→ R satisfy ψi (u) = 0
if and only if u = 0. Define

f̃i (x) = ψi (fi (x)), i = 0, . . . ,m, and

h̃i (x) = ψm+i (hi (x)), i = 1, . . . , p.

Then following two are equivalent:

min f0(x)
s.t. fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p,

min f̃0(x)

s.t. f̃i (x) ≤ 0, i = 1, . . . ,m

h̃i (x) = 0, i = 1, . . . , p.
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Least-norm and least-norm-squared

min ‖Ax − b‖2 versus min ‖Ax − b‖2
2.
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Slack variables

fi (x) ≤ 0 if and only if ∃ si ≥ 0 such that fi (x) + si = 0

si is called a slack variable.

Then following two are equivalent:

min f0(x)
s.t. fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

min f0(x)
s.t. fi (x) + si = 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p
si ≥ 0, i = 1, . . . ,m.
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Introducing equality constraints

The following two problems are equivalent:

min f0(A0x + b0) min f0(y0)
s.t. fi (Aix + bi ) ≤ 0, ∀i s.t. fi (yi ) ≤ 0, ∀i

hj(x) = 0, ∀j yi = Axi + bi ∀i
hj(x) = 0 ∀j

Optimization Lab. Convex Optimization A supplementary note to Chapter 4 of Convex Optimization by S. Boyd and L. Vandenberghe



Optimization problems
Convex optimizations

Quadratic optimization problems
Second-order cone programming

Geometric programming
Generalized inequality constraints

Semidefinite programs

Basic terminology
Expressing problems in standard form
Equivalent problems

Optimizing over some variables

Since inf
x,y

f (x , y) = inf
x

f̃ (x), where f̃ (x) = inf
y

f (x , y), following two are

equivalent:

min f0(x1, x2) ⇔ min f̃0(x1)
s.t. fi (x1) ≤ 0, i = 1, · · · ,m1 s.t. fi (x1) ≤ 0, i = 1, · · · ,m1

gj(x2) ≤ 0, j = 1, · · · ,m2

where f̃0(x1) = inf{f0(x1, z)|gj(z) ≤ 0, j = 1, · · · ,m2}.

Example

Consider a strictly convex quadratic program constrained on some
variables: min xT

1 P11x1 + 2xT
1 P12x2 + xT

2 P22x2 s.t. fi (x1) ≤ 0, i = 1, . . . ,m.
Since, infx2 xT

1 P11x1 + 2xT
1 P12x2 + xT

2 P22x2 = xT
1 (P11 − P12P

−1
22 PT

12)x1, we can
obtain equivalent problem:

min xT
1 (P11 − P12P

−1
22 PT

12)x1, s.t. fi (x1) ≤ 0, i = 1, . . . ,m.
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Epigraph problem form

The following two problems are equivalent:

min f0(x) min t
s.t. fi (x) ≤ 0, i = 1, · · · ,m s.t. f0(x)− t ≤ 0, i = 1, · · · ,m1

hj(x) = 0, j = 1, · · · , p fi (x) ≤ 0, i = 1, · · · ,m
hj(x) = 0, j = 1, · · · , p
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Convex optimization problems in standard form

Convex minimization

min f0(x) f0 is convex.
s.t. fi (x) ≤ 0, i = 1, . . . , m, fi are convex.

aT
j x = bj , j = 1, . . . , p.

If f0 is quasiconvex instead of convex, then problem is a quasiconvex
minimization problem.

Concave maximization

max f0(x) f0 is concave.
s.t. fi (x) ≥ 0, i = 1, . . . , m, fi are concave.

aT
j x = bj , j = 1, . . . , p.
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Local and global optima

Theorem

Any local optimum of convex optimization problems is also a global optimum.

Proof Let x be a local optimum: ∃ R > 0 s.t. f0(x) = inf{f0(z)| z , feasible,
‖z − x‖2 ≤ R}. Suppose, on the contrary, ∃ z ∈ D such that f (z) < f (x).
Then, ∃y such that ‖y − x‖2 < R and y = λx + (1− λ)z for some 0 < λ < 1.
Since f (y) ≥ f (x) > f (z), f (y) > λf (x) + (1− λ)f (z). A contradiction to
convexity of f0.

Remark

Not necess. true for quasiconvex minimization.
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Theorem

For convex minimization with differentiable f0, feasible x is optimal iff
∇f0(x)T (y − x) ≥ 0 for any feasible y .

Proof “If” part. For any feasible y we have f0(y) ≥ f0(x) +∇f0(x)T (y − x) ≥
f0(x).
“Only if” part. Suppose not: ∃y ∈ X such that ∇f0(x)T (y − x) < 0.
For λ ∈ [0, 1], let g(λ) = f0(λy + (1− λ)x). Then,

d

dλ
g(λ)

∣∣∣∣
λ=0

= ∇f0(x)T (y − x) < 0,

which implies that for small enough λ > 0, we have g(λ) < g(0). A

contradiction to optimality of x .
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Corollary

For unconstrained convex minimization, x is optimal iff x is feasible and
∇f0(x) = 0.

Corollary

For convex minimization with equality constraints only, x is optimal iff ∃λ s.t.
ATλ = ∇f0(x), where λ ∈ Rp.

Proof
x optimal ⇐⇒ ∀y s.t. Ay = b,∇f0(x)T (y − x) ≥ 0

⇐⇒ ∇f0(x)T z ≥ 0,∀z ∈ N (A) ⇐⇒ ∇f0(x)T z = 0,∀z ∈ N (A)
⇐⇒ ∇f0(x) ⊥ N (A) ⇐⇒ ∇f0(x) ∈ R(AT )
⇐⇒ ∃λ s.t. ATλ = ∇f0(x), λ ∈ Rp.
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Example

Consider the problem
min f0(x)
s.t. x ≥ 0

Optimality condition : x ≥ 0, ∇f0(x)T (y − x) ≥ 0 for all y ≥ 0.

∇f0(x)T y is unbounded below on y ≥ 0 unless ∇f0(x) ≥ 0, which
implies −∇f0(x)T x ≥ 0.

But, as x ≥ 0 and ∇f0(x) ≥ 0, we get ∇f0(x)T x = 0.

Thus, optimality condition becomes

x ≥ 0, ∇f0(x) ≥ 0, xi (∇f0(x))i = 0, complementary condition.
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min f0(x) f0 is quasiconvex,
s.t. fi (x) ≤ 0, i = 1, . . . ,m, fi ’s are convex,

Ax = b.

1 It can have local optima that are not global optima.

2 A sufficient optimality condition: If x is feasible and
∇f0(x)T (y − x) > 0, ∀ feasible y , then x is globally optimal.

3 Solvable via a sequence of convex feasibility problems.
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Let φt : Rn → R, t ∈ R such that

f0(x) ≤ t ⇐⇒ φt(x) ≤ 0 and φs(x) ≤ φt(x) for s ≥ t.

Then, optimal value p∗ can be computed as follows:

find x If the problem is feasible, then p∗ ≤ t = UB.
s.t. φt(x) ≤ 0 Otherwise, p∗ ≥ t = LB.

fi (x) ≤ 0, ∀i t ← (UB + LB)/2
Ax = b Repeat until UB − LB ≤ ε.

Note that it requires dlog2((UB − LB)/ε)e iterations for an ε-suboptimal

solution.
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Quadratic program (QP) minimizes convex quadratic over polyhedron.

min 1
2
xTPx + qT x + r

s.t. Gx ≤ h
Ax = b,

where P ∈ Sn
+, G ∈ Rm×n, A ∈ Rp×n.

Quadratically constrained quadratic program (QCQP) minimizes convex
quadratic over intersection of ellipsoids.

min 1
2
xTP0x + qT

0 x + r0
s.t. 1

2
xTPix + qT

i x + r0 ≤ 0, i = 1, · · · ,m
Ax = b,

where Pi ∈ Sn
+, i = 0, 1, · · · ,m.

QCQP ⊇ QP ⊇ LP.
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Minimizing Euclidean norm of affine functions

Least-squares and regression

‖Ax − b‖2
2 = xT AT Ax − 2bT Ax + bT b.

Analytical solution is x = A†b. But, if linear inequality constraints are added,
e.g.

min ‖Ax − b‖2
2

s.t. li ≤ xi ≤ ui , i = 1, · · · , n,

problem does not have analytical solution and solvable via QP.

Distance between polyhedra For P1 = {x |A1x ≤ b1},P2 = {x |A2x ≤ b2},

dist(P1,P2) = inf{‖x1 − x2‖2|x1 ∈ P1, x2 ∈ P2},

can be computed via following QP:

min ‖x1 − x2‖2
2

s.t. A1x ≤ b1(x1 ∈ P1)
A2x ≤ b2(x2 ∈ P2).

Optimization Lab. Convex Optimization A supplementary note to Chapter 4 of Convex Optimization by S. Boyd and L. Vandenberghe



Optimization problems
Convex optimizations

Quadratic optimization problems
Second-order cone programming

Geometric programming
Generalized inequality constraints

Semidefinite programs

Examples

Linear program with random cost

Suppose that c ∈ Rn is random with mean c̄ and covariance Σ. Then,

E(cT x) = c̄T x , Var(cT x) = E(cT x − c̄T x)2 = xTΣx

A possible problem is to minimize a weighted sum of expected cost and
uncertainty cost. To do so, we can consider γ, risk-sensitive cost so that the
problem is formulated as follows:

min c̄T x + γxTΣx
s.t. Gx ≤ h

Ax = b.
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Markowitz portfolio optimization

Let xi be amount of asset or stock i = 1, . . ., n; xi > 0 ↔ long
position in asset i , xi < 0 ↔ short position in asset i .

Let pi be increase of price of i during a period; we assume p has
mean vector p̄ and covariance matrix Σ.

Classical model minimizes risk guaranteeing a return with no
shorting:

min xTΣx
s.t. p̄T x ≥ rmin,

1T x = 1, x ≥ 0.

Various extensions are possible.
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For x ∈ Rn, Ai ∈ Rni×n, SOCP has the form

min f T x
s.t. ‖Aix + bi‖2 ≤ cT

i x + di , i = 1, · · · ,m
Fx = g .

The first constraints require affine transforms (Aix + bi , c
T
i x + di )

to be in second-order cones in Rni+1.

Note that SOCP ⊇ QCQP ( by squaring soc-constraints) and SOCP
⊇ LP (when Ai = 0, ∀i).
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Robust linear programming

Let ai ’s be uncertain and lie in given ellipsoids Ei = {āi + Piu|‖u‖2 ≤ 1}.

min cT x robust version−−−−−−−−−→ min cT x

s.t. aT
i x ≤ bi , i = 1, · · · ,m s.t. aT

i x ≤ bi ,∀ai ∈ Ei ,∀i

aT
i x ≤ bi ,∀ai ∈ Ei ⇔ sup{aT

i x |ai ∈ Ei} ≤ bi , and

sup{aT
i x |ai ∈ Ei} = āT

i x + sup{uTPT
i x |‖u‖ ≤ 1} = āT

i x + ‖PT
i x‖2 ≤ bi

Thus, we have the following SOCP:

min cT x
s.t. āT

i x + ‖PT
i x‖2 ≤ bi ,∀i .
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Linear programming with random constraints

Suppose that ai ’s are indep. Gaussian random vectors with mean āi and
covariance Σi . Also suppose P(aT

i x ≤ bi ) ≥ η ≥ 1/2. Let u = aT
i x and σ2 be

its variance. Normalizing we have

P

(
u − ū

σ
≤ bi − ū

σ

)
≥ η ⇐⇒ bi − ū

σ
≥ Φ−1(η) ⇐⇒ ū + Φ−1(η)σ ≤ bi .

From σ = (xTΣix)1/2, we have āT
i x + Φ−1(η)‖Σ1/2

i x‖2 ≤ bi . Hence

min cT x ⇔ min cT x

s.t. P(aT
i x ≤ bi ) ≥ η,∀i s.t. āT

i x + Φ−1(η)‖Σ1/2
i x‖2 ≤ bi ,∀i

Since η ≥ 1/2, Φ−1(η) ≥ 0, and problem is thus an SOCP.
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Monomials

f (x) = cxa1
1 xa2

2 · · · x
an
n , c > 0, ai ∈ R,domf = Rn

++

Closed under multiplication and division.

Posi(tively weighted sum of mo)nomials

f (x) =
K∑

k=1

ckx
a1k
1 xa2k

2 · · · x
ank
n , ck > 0

Closed under addition, multiplication, and nonnegative scaling.
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Definition

Geometric programming

min f0(x) f0 posynomial
s.t. fi (x) ≤ 1 i = 1, · · · ,m fi posynomials

hj(x) = 1 j = 1, · · · , p hj monomials
x > 0. implicit constraints

Extensions of geometric programming

max x/y ⇒ min x−1y
s.t. 2 ≤ x ≤ 3 s.t. 2x−1 ≤ 1, (1/3)x ≤ 1

x2 + 3y/z ≤ √y x2y−1/2 + 3y 1/2z−1 ≤ 1
x/y = z2 xy−1z−2 = 1
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Monomials and posynomials can be converted into convex form:

fmono(x) = cxa1
1 · · · x

an
n = c(ey1)a1 · · · (eyn )an = eaT y+b

fposy (x) =
K∑

k=1

ckx
a1k
1 · · · x

ank
n =

K∑
k=1

ck(e
y1)a1k · · · (eyn )ank =

K∑
k=1

eaT
k y+bk ,

where yi = log xi , b = log c, bk = log ck .

Using above conversion, we can transform GP into a convex optimization:

min

K0∑
k=1

eaT
0k y+b0k ⇒ min f̃0(y) = log

( K0∑
k=1

eaT
0k y+b0k

)
s.t.

Ki∑
k=1

eaT
ik y+bik ≤ 1 s.t. f̃i (y) = log

( Ki∑
k=1

eaT
ik y+bik

)
≤ 0

egT
j y+hj = 1 h̃j(y) = gT

j y + hj = 0.

Since f̃i ’s are convex and h̃j ’s are affine, this is convex optimization.
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Frobenius diagonal scaling

y = Mu scaling coordinates
−−−−−−−−−−−→

ỹ = DMD−1ũ with ũ = Du, ỹ = Dy .

‖DMD−1‖2
F = tr

(
(DMD−1)T (DMD−1)

)
=

n∑
i,j=1

(DMD−1)2ij =
n∑

i,j=1

M2
ijd

2
i /d2

j

Thus, minimizing Frobenius norm is an unconstrained GP.
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Examples

Design of cantilever beam

Minimize total volume of beam, w1h1 + · · ·+ wnhn subject to some
constraints.
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Design of cantilever beam(cont’d)

1 Upper and lower bounds on wi , hi

wmin ≤ wi ≤ wmax , hmin ≤ hi ≤ hmax , i = 1, · · · , N.

2 Upper and lower bounds on aspect ratios hi/wi

Smin ≤ hi/wi ≤ Smax , i = 1, · · · , N.

3 Upper bound on stress in each segment

6iF

wih
2
i

≤ σmax , i = 1, · · · , N.

4 Upper bound on vertical deflection at end of beam, y1 ≤ ymax

From deflection and slope of beam segments, y1 can be obtained:

vi = 12(i − 1/2)
F

Ewih
3
i

+ vi+1, yi = 6(i − 1/3)
F

Ewih
3
i

+ vi+1 + yi+1.

Optimization Lab. Convex Optimization A supplementary note to Chapter 4 of Convex Optimization by S. Boyd and L. Vandenberghe



Optimization problems
Convex optimizations

Quadratic optimization problems
Second-order cone programming

Geometric programming
Generalized inequality constraints

Semidefinite programs

Definition
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Convex optimization problem with generalized inequality constraints

min f0(x)
s.t. fi (x) �Ki 0, i = 1, · · · ,m

Ax = b

where f0 : Rn → R,Ki ⊆ Rki , and fi : Rn → Rki are Ki−convex.

Many properties of ordinary convex optimization are extended to this

problem

1 Feasible set, any sublevel set, and optimal set are convex.
2 Any local optimum is global optimum.
3 Feasible x is globally optimal iff ∇f0(x)T (y − x) ≥ 0 ∀ feasible y .
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Definition
Conic form problems
Second-order cone programs

Conic form problems (conic programs, or cone-LPs). When K is
nonnegative orthant, reduces to LP.

1. 2. 3.
min cT x min cT x min cT x
s.t. Fx + g �K 0 s.t. x �K 0 s.t. Fx + g �K 0

Ax = b Ax = b

1 General form.

2 Standard form.

3 Inequality form.
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Definition
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min f T x ⇒ min f T x
s.t. ‖Aix + bi‖2 ≤ cT

i x + di ,∀i s.t. −(Aix + bi , c
T
i x + di ) �Ki 0,∀i

Fx = g Fx = g

where Ki = {(y , t) ∈ Rki+1|‖y‖2 ≤ t}
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Examples

Here, K = Sk
+. Then conic form is

min cT x
s.t. x1F1 + · · · xnFn + G � 0 (LMI )

Ax = b,

where G ,F1, . . . ,Fn ∈ Sk , A ∈ Rp×n.

Note that if G ,F1, · · · ,Fn are all diagonal, then SDP reduces to LP.
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1. 2.
min tr(CX ) min cT x
s.t. tr(AiX ) = bi , i = 1, · · · , p s.t. x1A1 + · · ·+ xnAn � B

X � 0.

1 Standard form: C ,A1, · · · ,An ∈ Sn.

2 Inequality form: B,A1, · · · ,An ∈ Sk , c ∈ Rn.

Optimization Lab. Convex Optimization A supplementary note to Chapter 4 of Convex Optimization by S. Boyd and L. Vandenberghe



Optimization problems
Convex optimizations

Quadratic optimization problems
Second-order cone programming

Geometric programming
Generalized inequality constraints

Semidefinite programs

Definition
Standard and inequality form
Examples

Matrix norm (or maximum eigenvalue) minimization

Let A(x) = A0 + x1A1 + · · ·+ xnAn, where Ai ∈ Rp×q. How to minimize
maximum eigenvalue ‖A(x)‖2 or λmax(A(x))? Observe that

λmax(B) ≤ µ ⇐⇒ B = UλUT , λI − Λ � 0
⇐⇒ U(µI − Λ)UT � 0 ⇐⇒ µI − UΛUT � 0
⇐⇒ µI − B � 0.

Therefore, we have

λmax(A(x)TA(x)) ≤ s2 ⇐⇒ s2I−AT (x)A(x) � 0 ⇐⇒
[

sI A(x)
A(x)T xI

]
� 0,

an LMI!
In sum, min ‖A(x)‖2 is equivalent to

min t

s.t.

[
sI A(x)

A(x)T xI

]
� 0.
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