Convex Optimization

A supplementary note to Chapter 4 of Convex Optimization by S. Boyd and L. Vandenberghe

Optimization Lab.

IE department Seoul National University

19th August 2009

Convex optimizations Quadratic optimization problems Second-order cone programming Geometric programming Generalized inequality constraints Semidefinite programs

Basic terminology Expressing problems in standard form Equivalent problems

Optimization problem:

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1, \dots, m$
 $h_j(x) = 0$, $j = 1, \dots, p$.

- Decision variables: $x \in \mathbb{R}^n$
- Objective function: f₀(x)
- Constraints (inequality and equality): $f_i(x) \le 0$ and $h_j(x) = 0$.
- Domain of problem: $\mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{j=1}^{r} \operatorname{dom} h_j$ $x \in \mathcal{D}$ is feasible if it satisfies all constraints; infeasible, otherwise.

・ロト ・同ト ・ヨト ・ヨト

Convex optimizations Quadratic optimization problems Second-order cone programming Geometric programming Generalized inequality constraints Semidefinite programs

Basic terminology Expressing problems in standard form Equivalent problems

- Optimal value: $p^* = \inf\{f_0(x)|f_i(x) \le 0, \forall i, h_j(x) = 0, \forall j\}.$
- Optimal point: x* is optimal point if x* is feasible and f₀(x*) = p*. Denote by X_{opt} the set of optimal points.
- A feasible x is an ϵ -suboptimal point if $f_0(x) \le p^* + \epsilon$.
- A feasible x is locally optimal if $\exists R > 0$ s.t. $f_0(x) = \inf\{f_0(z)|f_i(x) \le 0, \forall i, h_j(x) = 0, \forall j, ||z - x||_2 \le R\}$
- Feasibility problem: "Find x satisfying all the constraints."

(日)

Convex optimizations Quadratic optimization problems Second-order cone programming Geometric programming Generalized inequality constraints Semidefinite programs

Basic terminology Expressing problems in standard form Equivalent problems

Expressing problems in standard form

• Standard form: Min-version

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad i = 1, \cdots, m \\ & h_j(x) = 0, \quad j = 1, \cdots, p. \end{array}$$

• Standard form: Max-version

$$\begin{array}{ll} \max & f_0(x) \\ \mathrm{s.t.} & f_i(x) \geq 0, \quad i = 1, \cdots, m \\ & h_j(x) = 0, \quad j = 1, \cdots, p \end{array}$$

(日) (同) (三) (三)

Convex optimizations Quadratic optimization problems Second-order cone programming Geometric programming Generalized inequality constraints Semidefinite programs

Basic terminology Expressing problems in standard form Equivalent problems

Equivalent problems

We say two problems are *equivalent* if, given a solution of one, we can efficiently find a solution of the other, and vice versa.

Example

Two problems are equivalent if $\alpha_i > 0, \forall i, \beta_j \neq 0, \forall j$:

$$\begin{array}{c|c} \min & f_0(x) & \min & \alpha_0 f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad \forall i \\ & h_j(x) = 0, \quad \forall j \end{array} \left| \begin{array}{c} \min & \alpha_0 f_0(x) \\ \text{s.t.} & \alpha_i f_i(x) \leq 0, \quad \forall i \\ & \beta_j h_j(x) = 0, \quad \forall j \end{array} \right|$$

Convex optimizations Quadratic optimization problems Second-order cone programming Geometric programming Generalized inequality constraints Semidefinite programs

Basic terminology Expressing problems in standard form Equivalent problems

Change of variables

Suppose $\phi : \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one mapping. Define $\tilde{f}_i(x) = f_i(\phi(x))$ and $\tilde{h}_j(x) = h_j(\phi(x))$ Then the following two problems are equivalent:

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$

$$\begin{array}{ll} \min & \tilde{f}_0(x) \\ s.t. & \tilde{f}_i(x) \leq 0, \ i = 1, \dots, m \\ & \tilde{h}_i(x) = 0, \ i = 1, \dots, p. \end{array}$$

・ロト ・同ト ・ヨト ・ヨト

Convex optimizations Quadratic optimization problems Second-order cone programming Geometric programming Generalized inequality constraints Semidefinite programs

Basic terminology Expressing problems in standard form Equivalent problems

Transformation of obj. and const. functions

Suppose that $\psi_0 : \mathbb{R} \to \mathbb{R}$ is monotone increasing, $\psi_1, \ldots, \psi_m : \mathbb{R} \to \mathbb{R}$ satisfy $\psi_i(u) \leq 0$ if and only if $u \leq 0$, and $\psi_{m+1}, \ldots, \psi_{m+p} : \mathbb{R} \to \mathbb{R}$ satisfy $\psi_i(u) = 0$ if and only if u = 0. Define

$$ilde{f}_i(x) = \psi_i(f_i(x)), \ i = 0, \dots, m,$$
 and
 $ilde{h}_i(x) = \psi_{m+i}(h_i(x)), \ i = 1, \dots, p.$

Then following two are equivalent:

$$\begin{array}{ll} \min & f_0(x) \\ s.t. & f_i(x) \leq 0, \ i = 1, \dots, m \\ & h_i(x) = 0, \ i = 1, \dots, p, \end{array}$$

 $\begin{array}{ll} \min & \tilde{f}_0(x) \\ s.t. & \tilde{f}_i(x) \leq 0, \ i = 1, \dots, m \\ & \tilde{h}_i(x) = 0, \ i = 1, \dots, p. \end{array}$

・ロト ・得ト ・ヨト ・ヨト

Convex optimizations Quadratic optimization problems Second-order cone programming Geometric programming Generalized inequality constraints Semidefinite programs

Basic terminology Expressing problems in standard form Equivalent problems

Least-norm and least-norm-squared

min $||Ax - b||_2$ versus min $||Ax - b||_2^2$.

(日) (同) (日) (日) (日)

Convex optimizations Quadratic optimization problems Second-order cone programming Geometric programming Generalized inequality constraints Semidefinite programs

Basic terminology Expressing problems in standard form Equivalent problems

Slack variables

- $f_i(x) \leq 0$ if and only if $\exists s_i \geq 0$ such that $f_i(x) + s_i = 0$
- s_i is called a slack variable.
- Then following two are equivalent:

$$\begin{array}{ll} \min & f_0(x) \\ s.t. & f_i(x) \leq 0, \ i = 1, \dots, m \\ & h_i(x) = 0, \ i = 1, \dots, p \end{array}$$

$$\begin{array}{ll} \min & f_0(x) \\ s.t. & f_i(x) + s_i = 0, \ i = 1, \dots, m \\ & h_i(x) = 0, \ i = 1, \dots, p \\ & s_i \ge 0, \ i = 1, \dots, m. \end{array}$$

(日) (同) (三) (三)

-

Convex optimizations Quadratic optimization problems Second-order cone programming Geometric programming Generalized inequality constraints Semidefinite programs

Basic terminology Expressing problems in standard form Equivalent problems

Introducing equality constraints

• The following two problems are equivalent:

$$\begin{array}{lll} \min & f_0(A_0x + b_0) & \min & f_0(y_0) \\ \text{s.t.} & f_i(A_ix + b_i) \leq 0, \quad \forall i & \text{s.t.} & f_i(y_i) \leq 0, \quad \forall i \\ & h_j(x) = 0, \quad \forall j & y_i = Ax_i + b_i \quad \forall i \\ & & h_j(x) = 0 & \forall j \end{array}$$

(日) (同) (三) (三)

Convex optimizations Quadratic optimization problems Second-order cone programming Geometric programming Generalized inequality constraints Semidefinite programs

Basic terminology Expressing problems in standard form Equivalent problems

Optimizing over some variables

Since $\inf_{x,y} f(x,y) = \inf_{x} \tilde{f}(x)$, where $\tilde{f}(x) = \inf_{y} f(x,y)$, following two are equivalent:

$$\begin{array}{lll} \min & f_0(x_1, x_2) & \Leftrightarrow & \min & \tilde{f}_0(x_1) \\ \mathrm{s.t.} & f_i(x_1) \leq 0, \quad i = 1, \cdots, m_1 & \mathrm{s.t.} & f_i(x_1) \leq 0, \quad i = 1, \cdots, m_1 \\ & g_j(x_2) \leq 0, \quad j = 1, \cdots, m_2 \end{array}$$

where $\tilde{f}_0(x_1) = \inf\{f_0(x_1, z) | g_j(z) \le 0, j = 1, \cdots, m_2\}.$

Example

Consider a strictly convex quadratic program constrained on some variables: $\min x_1^T P_{11}x_1 + 2x_1^T P_{12}x_2 + x_2^T P_{22}x_2$ s.t. $f_i(x_1) \leq 0, i = 1, ..., m$. Since, $\inf_{x_2} x_1^T P_{11}x_1 + 2x_1^T P_{12}x_2 + x_2^T P_{22}x_2 = x_1^T (P_{11} - P_{12}P_{22}^{-1}P_{12}^T)x_1$, we can obtain equivalent problem:

min
$$x_1^T (P_{11} - P_{12}P_{22}^{-1}P_{12}^T) x_1$$
, s.t. $f_i(x_1) \le 0, \ i = 1, \dots, m$

Convex optimizations Quadratic optimization problems Second-order cone programming Geometric programming Generalized inequality constraints Semidefinite programs

Basic terminology Expressing problems in standard form Equivalent problems

Epigraph problem form

• The following two problems are equivalent:

$$\begin{array}{lll} \min & f_0(x) & \min & t \\ \mathrm{s.t.} & f_i(x) \leq 0, & i = 1, \cdots, m \\ & h_j(x) = 0, & j = 1, \cdots, p \end{array} \qquad \begin{array}{lll} \min & t \\ \mathrm{s.t.} & f_0(x) - t \leq 0, & i = 1, \cdots, m_1 \\ & f_i(x) \leq 0, & i = 1, \cdots, m \\ & h_i(x) = 0, & j = 1, \cdots, p \end{array}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Convex optimization problems in standard form Local and global optima Optimality criteria for differentiable objective Quasiconvex optimization

Convex optimization problems in standard form

Convex minimization

$$\begin{array}{ll} \min & f_0(x) & f_0 \text{ is convex.} \\ \text{s.t.} & f_i(x) \leq 0, \quad i=1,\ldots,m, \quad f_i \text{ are convex.} \\ & a_j^T x = b_j, \quad j=1,\ldots,p. \end{array}$$

If f_0 is quasiconvex instead of convex, then problem is a quasiconvex minimization problem.

Concave maximization

$$\begin{array}{ll} \max & f_0(x) & f_0 \text{ is concave.} \\ \text{s.t.} & f_i(x) \geq 0, \quad i=1,\ldots,m, \quad f_i \text{ are concave} \\ & a_j^T x = b_j, \quad j=1,\ldots,p. \end{array}$$

・ロト ・同ト ・ヨト ・ヨト

Convex optimization problems in standard form Local and global optima Optimality criteria for differentiable objective Quasiconvex optimization

Local and global optima

Theorem

Any local optimum of convex optimization problems is also a global optimum.

Proof Let *x* be a local optimum: $\exists R > 0$ s.t. $f_0(x) = \inf\{f_0(z) | z$, feasible, $||z - x||_2 \le R\}$. Suppose, on the contrary, $\exists z \in D$ such that f(z) < f(x). Then, $\exists y$ such that $||y - x||_2 < R$ and $y = \lambda x + (1 - \lambda)z$ for some $0 < \lambda < 1$. Since $f(y) \ge f(x) > f(z)$, $f(y) > \lambda f(x) + (1 - \lambda)f(z)$. A contradiction to convexity of f_0 . \Box

Remark

Not necess. true for quasiconvex minimization.

イロト 不得 トイヨト イヨト 二日

Convex optimization problems in standard form Local and global optima Optimality criteria for differentiable objective Quasiconvex optimization

Theorem

For convex minimization with differentiable f_0 , feasible x is optimal iff $\nabla f_0(x)^T (y - x) \ge 0$ for any feasible y.

Proof "If" part. For any feasible y we have $f_0(y) \ge f_0(x) + \nabla f_0(x)^T (y-x) \ge f_0(x)$.

"Only if" part. Suppose not: $\exists y \in X$ such that $\nabla f_0(x)^T (y - x) < 0$. For $\lambda \in [0, 1]$, let $g(\lambda) = f_0(\lambda y + (1 - \lambda)x)$. Then,

$$\frac{d}{d\lambda}g(\lambda)\Big|_{\lambda=0}=\nabla f_0(x)^T(y-x)<0,$$

which implies that for small enough $\lambda > 0$, we have $g(\lambda) < g(0)$. A contradiction to optimality of x. \Box

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Convex optimization problems in standard form Local and global optima Optimality criteria for differentiable objective Quasiconvex optimization

Corollary

For unconstrained convex minimization, x is optimal iff x is feasible and $\nabla f_0(x) = 0$.

Corollary

For convex minimization with equality constraints only, x is optimal iff $\exists \lambda$ s.t. $A^T \lambda = \nabla f_0(x)$, where $\lambda \in \mathbb{R}^p$.

Proof

$$\begin{array}{ll} \mathsf{x} \ \ \mathsf{optimal} & \Longleftrightarrow & \forall y \ \mathsf{s.t.} \ \ Ay = b, \nabla f_0(x)^T(y-x) \ge 0 \\ & \Leftrightarrow & \nabla f_0(x)^T z \ge 0, \forall z \in \mathcal{N}(A) \iff \nabla f_0(x)^T z = 0, \forall z \in \mathcal{N}(A) \\ & \Leftrightarrow & \nabla f_0(x) \perp \mathcal{N}(A) \iff \nabla f_0(x) \in \mathcal{R}(A^T) \\ & \Leftrightarrow & \exists \lambda \ \mathsf{s.t.} \ \ A^T \lambda = \nabla f_0(x), \lambda \in \mathbb{R}^p. \end{array}$$

(日) (同) (三) (三)

Convex optimization problems in standard form Local and global optima Optimality criteria for differentiable objective Quasiconvex optimization

Example

Consider the problem

- $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & x \ge 0 \end{array}$
- Optimality condition : $x \ge 0$, $\nabla f_0(x)^T (y x) \ge 0$ for all $y \ge 0$.
- $\nabla f_0(x)^T y$ is unbounded below on $y \ge 0$ unless $\nabla f_0(x) \ge 0$, which implies $-\nabla f_0(x)^T x \ge 0$.
- But, as $x \ge 0$ and $\nabla f_0(x) \ge 0$, we get $\nabla f_0(x)^T x = 0$.
- Thus, optimality condition becomes

 $x \ge 0$, $\nabla f_0(x) \ge 0$, $x_i(\nabla f_0(x))_i = 0$, complementary condition.

イロト 不得 とうせい かほとう ほ

Convex optimization problems in standard form Local and global optima Optimality criteria for differentiable objective Quasiconvex optimization

$$\begin{array}{ll} \min & f_0(x) & f_0 \text{ is quasiconvex,} \\ \text{s.t.} & f_i(x) \leq 0, \ i=1,\ldots,m, \quad f_i\text{ 's are convex,} \\ & Ax=b. \end{array}$$

- It can have local optima that are not global optima.
- A sufficient optimality condition: If x is feasible and ∇f₀(x)^T(y − x) > 0, ∀ feasible y, then x is globally optimal.
- Solvable via a sequence of convex feasibility problems.

(日) (同) (三) (三)

Convex optimization problems in standard form Local and global optima Optimality criteria for differentiable objective Quasiconvex optimization

Let $\phi_t : \mathbb{R}^n \to \mathbb{R}, t \in \mathbb{R}$ such that

$$f_0(x) \leq t \iff \phi_t(x) \leq 0 \text{ and } \phi_s(x) \leq \phi_t(x) \text{ for } s \geq t.$$

Then, optimal value p^* can be computed as follows:

 $\begin{array}{ll} \mathrm{find} & x \\ \mathrm{s.t.} & \phi_t(x) \leq 0 \\ & f_i(x) \leq 0, \quad \forall i \\ & Ax = b \end{array} \end{array} \begin{array}{ll} \mathrm{If} \ \mathrm{the} \ \mathrm{problem} \ \mathrm{is} \ \mathrm{feasible}, \ \mathrm{then} \ p^* \leq t = UB. \\ \mathrm{Otherwise}, \ p^* \geq t = LB. \\ t \leftarrow (UB + LB)/2 \\ \mathrm{Repeat} \ \mathrm{until} \ UB - LB \leq \epsilon. \end{array}$

Note that it requires $\lceil \log_2((UB - LB)/\epsilon) \rceil$ iterations for an ϵ -suboptimal solution.

イロト イポト イヨト イヨト 二日

Optimization problems Convex optimizations Quadratic optimization problems Second-order cone programming Geometric programming Generalized inequality constraints Semidefinite programs	
---	--

• Quadratic program (QP) minimizes convex quadratic over polyhedron.

$$\begin{array}{ll} \min & \frac{1}{2}x^T P x + q^T x + r \\ \text{s.t.} & G x \leq h \\ & A x = b, \end{array}$$

where $P \in \mathbb{S}^n_+$, $G \in \mathbb{R}^{m \times n}$, $A \in \mathbb{R}^{p \times n}$.

• Quadratically constrained quadratic program (QCQP) minimizes convex quadratic over intersection of ellipsoids.

min
$$\frac{1}{2}x^T P_0 x + q_0^T x + r_0$$

s.t. $\frac{1}{2}x^T P_i x + q_i^T x + r_0 \le 0, \ i = 1, \cdots, m$
 $Ax = b,$

where $P_i \in \mathbb{S}^n_+$, $i = 0, 1, \cdots, m$.

• $QCQP \supseteq QP \supseteq LP$.

Examples

Minimizing Euclidean norm of affine functions

• Least-squares and regression

$$||Ax - b||_2^2 = x^T A^T A x - 2b^T A x + b^T b.$$

Analytical solution is $x = A^{\dagger}b$. But, if linear inequality constraints are added, e.g.

$$\begin{array}{ll} \min & \|Ax - b\|_2^2\\ \text{s.t.} & l_i \leq x_i \leq u_i, i = 1, \cdots, n, \end{array}$$

problem does not have analytical solution and solvable via QP.

• Distance between polyhedra For $\mathcal{P}_1 = \{x | A_1 x \leq b_1\}, \mathcal{P}_2 = \{x | A_2 x \leq b_2\},\$

$$dist(\mathcal{P}_1, \mathcal{P}_2) = inf\{||x_1 - x_2||_2 | x_1 \in \mathcal{P}_1, x_2 \in \mathcal{P}_2\},\$$

can be computed via following QP:

$$\begin{array}{ll} \min & \|x_1 - x_2\|_2^2 \\ {\rm s.t.} & A_1 x \leq b_1 (x_1 \in \mathcal{P}_1) \\ & A_2 x \leq b_2 (x_2 \in \mathcal{P}_2). \end{array}$$

・ロト ・同ト ・ヨト ・ヨト

Examples

Linear program with random cost

Suppose that $c \in \mathbb{R}^n$ is random with mean \overline{c} and covariance Σ . Then,

$$\mathsf{E}(c^{\mathsf{T}}x) = \bar{c}^{\mathsf{T}}x, \ \mathsf{Var}(c^{\mathsf{T}}x) = \mathsf{E}(c^{\mathsf{T}}x - \bar{c}^{\mathsf{T}}x)^2 = x^{\mathsf{T}}\Sigma x$$

A possible problem is to minimize a weighted sum of expected cost and uncertainty cost. To do so, we can consider γ , *risk-sensitive* cost so that the problem is formulated as follows:

min
$$\bar{c}^T x + \gamma x^T \Sigma x$$

s.t. $Gx \le h$
 $Ax = b$.

・ロト ・同ト ・ヨト ・ヨト

Examples

Markowitz portfolio optimization

- Let x_i be amount of asset or stock i = 1, ..., n; x_i > 0 ↔ long position in asset i, x_i < 0 ↔ short position in asset i.
- Let p_i be increase of price of i during a period; we assume p has mean vector p
 and covariance matrix Σ.
- Classical model minimizes risk guaranteeing a return with no shorting:

$$\begin{array}{ll} \min & x^T \Sigma x \\ \text{s.t.} & \bar{p}^T x \geq r_{\min}, \\ & \mathbf{1}^T x = \mathbf{1}, \ x \geq \mathbf{0} \end{array}$$

• Various extensions are possible.

Optimization problems Convex optimizations Quadratic optimization problems Second-order cone programming Geometric programming Generalized inequality constraints Semidefinite programs	Examples
---	----------

For $x \in \mathbb{R}^n$, $A_i \in \mathbb{R}^{n_i \times n}$, SOCP has the form

$$\begin{array}{ll} \min & f^{\mathsf{T}}x \\ \text{s.t.} & \|A_ix + b_i\|_2 \leq c_i^{\mathsf{T}}x + d_i, i = 1, \cdots, m \\ & Fx = g. \end{array}$$

- The first constraints require affine transforms (A_ix + b_i, c_i^Tx + d_i) to be in second-order cones in ℝ^{n_i+1}.
- Note that SOCP \supseteq QCQP (by squaring soc-constraints) and SOCP \supseteq LP (when $A_i = 0, \forall i$).

A B M A B M

Examples

Robust linear programming

Let a_i 's be uncertain and lie in given ellipsoids $\mathcal{E}_i = \{\bar{a}_i + P_i u | ||u||_2 \le 1\}$.

$$\begin{array}{lll} \min & c^T x & \xrightarrow{robust version} & \min & c^T x \\ \mathrm{s.t.} & a_i^T x \leq b_i, i = 1, \cdots, m & & \mathrm{s.t.} & a_i^T x \leq b_i, \forall a_i \in \mathcal{E}_i, \forall i \end{array}$$

$$a_i^{\mathsf{T}}x \leq b_i, orall a_i \in \mathcal{E}_i \Leftrightarrow \sup\{a_i^{\mathsf{T}}x | a_i \in \mathcal{E}_i\} \leq b_i$$
, and

 $\sup\{a_i^T x | a_i \in \mathcal{E}_i\} = \overline{a}_i^T x + \sup\{u^T P_i^T x | \|u\| \le 1\} = \overline{a}_i^T x + \|P_i^T x\|_2 \le b_i$

Thus, we have the following SOCP:

$$\begin{array}{ll} \min & c^T x \\ \text{s.t.} & \bar{a}_i^T x + \| P_i^T x \|_2 \leq b_i, \forall i. \end{array}$$

- 4 同 2 4 日 2 4 日 2

Examples

Linear programming with random constraints

Suppose that a_i 's are indep. Gaussian random vectors with mean \bar{a}_i and covariance Σ_i . Also suppose $P(a_i^T x \le b_i) \ge \eta \ge 1/2$. Let $u = a_i^T x$ and σ^2 be its variance. Normalizing we have

$$\mathsf{P}\bigg(\frac{u-\bar{u}}{\sigma} \leq \frac{b_i-\bar{u}}{\sigma}\bigg) \geq \eta \iff \frac{b_i-\bar{u}}{\sigma} \geq \Phi^{-1}(\eta) \iff \bar{u}+\Phi^{-1}(\eta)\sigma \leq b_i.$$

From $\sigma = (x^T \Sigma_i x)^{1/2}$, we have $\bar{a}_i^T x + \Phi^{-1}(\eta) \| \Sigma_i^{1/2} x \|_2 \le b_i$. Hence

 $\begin{array}{lll} \min & c^T x & \Leftrightarrow & \min & c^T x \\ \mathrm{s.t.} & \mathsf{P}(a_i^T x \leq b_i) \geq \eta, \forall i & & \mathrm{s.t.} & \bar{a}_i^T x + \Phi^{-1}(\eta) \| \Sigma_i^{1/2} x \|_2 \leq b_i, \forall i \end{array}$

Since $\eta \ge 1/2$, $\Phi^{-1}(\eta) \ge 0$, and problem is thus an SOCP.

イロト 不得 トイヨト イヨト 二日

Monomials and posynomials Geometric program in convex form Examples

Monomials

$$f(x) = c x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}, c > 0, a_i \in \mathbb{R}, \operatorname{dom} f = \mathbb{R}_{++}^n$$

Closed under multiplication and division.

• Posi(tively weighted sum of mo)nomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, c_k > 0$$

Closed under addition, multiplication, and nonnegative scaling.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Monomials and posynomials Geometric program in convex form Examples

Definition

Geometric programming

$$\begin{array}{ll} \min & f_0(x) \\ {\rm s.t.} & f_i(x) \leq 1 & i = 1, \cdots, m \\ & h_j(x) = 1 & j = 1, \cdots, p \\ & x > 0. \end{array}$$

f₀ posynomialf_i posynomialsh_j monomialsimplicit constraints

• Extensions of geometric programming

(日) (同) (三) (三)

Monomials and posynomials Geometric program in convex form Examples

• Monomials and posynomials can be converted into convex form:

$$f_{mono}(x) = cx_1^{a_1} \cdots x_n^{a_n} = c(e^{y_1})^{a_1} \cdots (e^{y_n})^{a_n} = e^{a^T y + b}$$

$$f_{posy}(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} \cdots x_n^{a_{nk}} = \sum_{k=1}^{K} c_k (e^{y_1})^{a_{1k}} \cdots (e^{y_n})^{a_{nk}} = \sum_{k=1}^{K} e^{a_k^T y + b_k},$$

where $y_i = \log x_i$, $b = \log c$, $b_k = \log c_k$.

• Using above conversion, we can transform GP into a convex optimization:

$$\begin{array}{ll} \min & \sum\limits_{k=1}^{K_0} e^{a_{0k}^T y + b_{0k}} & \Rightarrow & \min & \tilde{f}_0(y) = \log\left(\sum\limits_{k=1}^{K_0} e^{a_{0k}^T y + b_{0k}}\right) \\ \text{s.t.} & \sum\limits_{\substack{k=1\\e^{g_i^T y + h_j}}}^{K_i} e^{a_{ik}^T y + b_{ik}} \leq 1 & \text{s.t.} & \tilde{f}_i(y) = \log\left(\sum\limits_{k=1}^{K_i} e^{a_{ik}^T y + b_{ik}}\right) \leq 0 \\ & & \tilde{h}_j(y) = g_j^T y + h_j = 0. \end{array}$$

Since \tilde{f}_i 's are convex and \tilde{h}_i 's are affine, this is convex optimization.

-

Monomials and posynomials Geometric program in convex form **Examples**

• Frobenius diagonal scaling

$$y = Mu$$
 scaling coordinates $\tilde{y} = DMD^{-1}\tilde{u}$ with $\tilde{u} = Du, \tilde{y} = Dy$.

$$\|DMD^{-1}\|_{F}^{2} = \operatorname{tr}((DMD^{-1})^{T}(DMD^{-1})) = \sum_{i,j=1}^{n} (DMD^{-1})_{ij}^{2} = \sum_{i,j=1}^{n} M_{ij}^{2} d_{i}^{2} / d_{j}^{2}$$

Thus, minimizing Frobenius norm is an unconstrained GP.

Monomials and posynomials Geometric program in convex form Examples

Design of cantilever beam

Minimize total volume of beam, $w_1h_1 + \cdots + w_nh_n$ subject to some constraints.

(日) (同) (三) (三)

Monomials and posynomials Geometric program in convex form **Examples**

Design of cantilever beam(cont'd)

(1) Upper and lower bounds on w_i , h_i

$$w_{min} \leq w_i \leq w_{max}, h_{min} \leq h_i \leq h_{max}, i = 1, \cdots, N.$$

2 Upper and lower bounds on aspect ratios h_i/w_i

$$S_{min} \leq h_i/w_i \leq S_{max}, i = 1, \cdots, N.$$

Opper bound on stress in each segment

$$\frac{6iF}{w_ih_i^2} \leq \sigma_{max}, i = 1, \cdots, N.$$

() Upper bound on vertical deflection at end of beam, $y_1 \le y_{max}$ From deflection and slope of beam segments, y_1 can be obtained:

$$v_i = 12(i - 1/2) \frac{F}{Ew_i h_i^3} + v_{i+1}, y_i = 6(i - 1/3) \frac{F}{Ew_i h_i^3} + v_{i+1} + y_{i+1}.$$

・ロト ・同ト ・ヨト ・ヨト

Definition Conic form problems Second-order cone programs

• Convex optimization problem with generalized inequality constraints

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \preceq_{K_i} 0, i = 1, \cdots, m \\ & Ax = b \end{array}$$

where $f_0 : \mathbb{R}^n \to \mathbb{R}, K_i \subseteq \mathbb{R}^{k_i}$, and $f_i : \mathbb{R}^n \to \mathbb{R}^{k_i}$ are K_i -convex.

- Many properties of ordinary convex optimization are extended to this problem
 - Feasible set, any sublevel set, and optimal set are convex.
 - 2 Any local optimum is global optimum.
 - § Feasible x is globally optimal iff $\nabla f_0(x)^T (y-x) \ge 0 \ \forall$ feasible y.

イロン 不同 とくほう イロン

Definition Conic form problems Second-order cone programs

Conic form problems (conic programs, or cone-LPs). When K is nonnegative orthant, reduces to LP.

1.
min
$$c^T x$$

s.t. $Fx + g \preceq_K 0$
 $Ax = b$

$$\begin{vmatrix}
2. \\
\min & c^T x \\
s.t. & x \succeq_K 0 \\
Ax = b
\end{vmatrix}$$

$$\begin{vmatrix}
3. \\
\min & c^T x \\
s.t. & Fx + g \preceq_K 0 \\
Ax = b
\end{vmatrix}$$

General form.

2 Standard form.

Inequality form.

(日) (同) (三) (三)

Definition Conic form problems Second-order cone programs

$$\begin{array}{ll} \min & f^T x & \Rightarrow & \min & f^T x \\ \text{s.t.} & \|A_i x + b_i\|_2 \leq c_i^T x + d_i, \forall i & \text{s.t.} & -(A_i x + b_i, c_i^T x + d_i) \preceq_{\kappa_i} 0, \forall i \\ F x = g & F x = g \end{array}$$

where $K_i = \{(y, t) \in \mathbb{R}^{k_i + 1} | ||y||_2 \le t\}$

(a)

Definition Standard and inequality form Examples

Here, $K = \mathbb{S}_{+}^{k}$. Then conic form is

min
$$c^T x$$

s.t. $x_1 F_1 + \cdots + x_n F_n + G \leq 0$ (LMI)
 $Ax = b$,

where $G, F_1, \ldots, F_n \in \mathbb{S}^k$, $A \in \mathbb{R}^{p \times n}$. Note that if G, F_1, \cdots, F_n are all diagonal, then SDP reduces to LP.

Definition Standard and inequality form Examples

1.
min
$$\operatorname{tr}(CX)$$

s.t. $\operatorname{tr}(A_iX) = b_i, i = 1, \cdots, p$
 $X \succeq 0.$
2.
min $c^T x$
s.t. $x_1A_1 + \cdots + x_nA_n \preceq B$

1 Standard form:
$$C, A_1, \dots, A_n \in \mathbb{S}^n$$

2 Inequality form: $B, A_1, \dots, A_n \in \mathbb{S}^k, c \in \mathbb{R}^n$.

Definition Standard and inequality form Examples

Matrix norm (or maximum eigenvalue) minimization

Let $A(x) = A_0 + x_1A_1 + \cdots + x_nA_n$, where $A_i \in \mathbb{R}^{p \times q}$. How to minimize maximum eigenvalue $||A(x)||_2$ or $\lambda_{max}(A(x))$? Observe that

$$\begin{array}{ll} \lambda_{\max(B)} \leq \mu & \Longleftrightarrow & B = U\lambda U^T, \lambda I - \Lambda \succeq 0 \\ & \Leftrightarrow & U(\mu I - \Lambda) U^T \succeq 0 \iff \mu I - U\Lambda U^T \succeq 0 \\ & \Leftrightarrow & \mu I - B \succeq 0. \end{array}$$

Therefore, we have

$$\lambda_{max}(A(x)^{T}A(x)) \leq s^{2} \iff s^{2}I - A^{T}(x)A(x) \succeq 0 \iff \begin{bmatrix} sI & A(x) \\ A(x)^{T} & xI \end{bmatrix} \succeq 0,$$

an LMI! In sum, min $||A(x)||_2$ is equivalent to

min
$$t$$

s.t. $\begin{bmatrix} sl & A(x) \\ A(x)^T & xl \end{bmatrix} \succeq 0.$