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Recall our optimization, min{f0(x)| fi (x) ≤ 0, i = 1, · · · , m, hj(x) = 0, j = 1,
. . ., p}.

Definition

Lagrangian L : Rn × Rm × Rp → R is

L(x , λ, ν) = f0(x) +
m∑

i=1

λi fi (x) +

p∑
j=1

νjhj(x)

λ and ν called dual variables or Lagrange multipliers.

Definition

Lagrange dual function g : Rm × Rp → R is

g(λ, ν) = inf
x∈D

L(x , λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λi fi (x) +

p∑
j=1

νjhj(x)

)
.

Thus g is pointwise infimum of affine functions of (λ, ν).
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Lemma

For any λ ≥ 0 and ν, g(λ, ν) ≤ p∗.

Proof For any feasible x , λ ≥ 0 and any ν, we have
∑m

i=1 λi fi (x) +∑p
j=1 νjhj(x) ≤ 0, and hence L(x , λ, ν) ≤ f0(x). Therefore, we have

g(λ, ν) = inf
x∈D

L(x , λ, ν) ≤ L(x , λ, ν) ≤ f0(x).

Pair (λ, ν) is called dual feasible when λ ≥ 0, and g(λ, ν) > −∞.
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Linear approximation interpretation

Notice our optimization is equivalent to

min f0(x) +
m∑

i=1

I−(fi (x)) +

p∑
j=1

I0(hj(x)),

if I− and I0 satisfy I−(u) =

{
0 u ≤ 0
∞ u > 0

, and I0(u) =

{
0 u = 0
∞ u 6= 0

.

If we replace I−(u) and I0(u) with λiu and µiu respectively, then we get
Lagrange dual function

min L(x , λ, µ) = f0(x) +
m∑

i=1

λi fi (x) +

p∑
j=1

νjhj(x).

Since λiu ≤ I−(u) and νiu ≤ I0(u) for all u, dual function yields a lower bound

on optimal value.
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Least-squares solution of linear system

min xT x
s.t. Ax = b

→ L(x , ν) = xT x + νT (Ax − b)

L(x , ν) is convex quadratic in x , and infimum attains when
∇xL(x , ν) = 2x + ATν = 0 or x = −(1/2)ATν. Thus Lagrange dual is

g(ν) = inf
x

L(x , ν) = L(−(1/2)ATν, ν) = −(1/4)νTAATν − bTν.

Thus −(1/4)νTAATν − bTν ≤ inf{xT x |Ax = b} for all feasible pair

(x , ν).
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Standard form LP

min cT x
s.t. Ax = b

x � 0
→ L(x , λ, ν) = cT x −

n∑
i=1

λixi + νT (Ax − b)

= −bTν + (c + ATν − λ)x

Since g(λ, ν) is pointwise infimum of x , we have the following:

g(λ, ν) = infx L(x , λ, ν) = −bTν + infx(c + ATν − λ)x

=

{
−bTν ifATν − λ + c = 0,
−∞ otherwise.
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Two-way partitioning

min xT Wx
s.t. x2

j = 1, j = 1, · · · , n

Wij and −Wij , resp. are costs of having i and j in same set and different sets in
partition.
NP-hard problem. Can obtain lower bounds on optimal value from Lagrange dual:

L(x , ν) = xT Wx +
n∑

j=1

νj (x
2
j − 1) = xT (W + diag(ν))x − 1T ν

→ g(ν) = infx xT (W + diag(ν))x − 1T ν

=

{
−1T ν W + diag(ν) � 0
−∞ otherwise

For example, ν = −λmin(W )1 is dual feasible yields the bound:

p∗ ≥ −1T ν = nλmin(W ).
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Recall conjugate function f ∗(y) = sup
x∈domf

{yT x − f (x)}.

Dual and conjugate: a simple case

min f (x) ⇒ L(x , ν) = f (x) + νT x
s.t. x = 0 g(ν) = infx{f (x) + νT x} = − supx{(−ν)T x − f (x)}

= −f ∗(−ν).

Dual and conjugate: for problem with linear ineq. and equality constraints

min f0(x) ⇒ g(λ, ν) = infx{f0(x) + λT (Ax − b) + νT (Cx − d)}
s.t. Ax ≤ b = −bT λ− dT ν + infx{f0(x)(AT λ + CT ν)T x}

Cx = d = −bT λ− dT ν + f ∗0 (−AT λ− CT ν),

where domg = {(λ, ν)| − AT λ− CT ν ∈ domf ∗0 }.
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Equality constrained norm minimization

min ‖x‖
s.t. Ax = b,

Then f ∗0 (y) = sup
x
{yT x − f (x)} =

{
0 if ‖y‖∗ ≤ 1,
∞ otherwise.

Therefore, we have the following dual function:

g(ν) = −bT ν − f ∗0 (−AT ν) =

{
−bT ν ‖AT ν‖∗ ≤ 1
−∞ otherwise

Entropy maximization

min f0(x) =
∑

i xi log xi

s.t. Ax ≤ b, 1T x = 1,
where domf0 = Rn

++

Since f ∗0 (y) =
∑

i e
yi−1, we have dual function

g(λ, ν) = −bT λ− ν −
n∑

i=1

e−aT
i λ−ν−1 = −bT λ− ν − e−ν−1

n∑
i=1

e−aT
i λ.
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Minimum volume covering ellipsoid

min f0(X ) = log detX−1

s.t. aT
i Xai ≤ 1, i = 1, · · · , m,

where domf0 = Sn
++

When a solid S is linearly transformed into AS ,

vol(AS) = det(ATA)−1/2vol(S).

Consider ellipsoid EX = {z |zTXz ≤ 1}, image of linear transform X of
unit circle. Volume of EX is proportional to (det X−1)1/2. Therefore, via
this optimization, can obtain a min vol ellipsoid including a1, . . ., an.
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What is the best lower bound from Lagrange dual function?

max g(λ, ν)
s.t. λ ≥ 0.

Similarly, we can define the dual feasibility and the dual optimality, and
we have

domg = {(λ, ν)|g(λ, ν) > −∞}.

Lagrange dual problem is a convex optimization problem regardless of
convexity of original problem (or primal problem).
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Lagrange dual of LP

min cT x
s.t. Ax = b, x � 0

→ g(λ, ν) =

{
−bT ν AT ν − λ + c = 0
−∞ otherwise

Unless AT ν − λ + c = 0, g is infeasible, so Lagrange dual problem can be
represented as

max −bT ν or equvalently, max −bT ν

s.t. AT ν − λ + c = 0 s.t. AT ν + c � 0.
λ � 0,

Similarly, if LP has inequality constraints, then Lagrange dual problem is given
as

min cT x ⇒ max −bT λ

s.t. Ax ≤ b s.t. AT λ + c = 0
λ � 0.
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Since Lagrange dual provides lower bound for primal,

d∗ ≤ p∗,

where p∗ and d∗, resp. are optimal values of primal and dual problems.

From this weak duality, we have

Primal unbounded below ⇒ dual infeasible,
Dual unbounded above ⇒ primal infeasible.

Dual problem, due to convexity, is solvable efficiently in many cases. For
example, lower bound on two-way partitioning problem can be computed via
following SDP:

max −1T ν
s.t. W + diag(ν) � 0.
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We say strong duality holds if d∗ = p∗.

Strong duality does not hold in general. To guarantee it we need
some constraint qualification such as a Slater-type condition.

Slater’s condition: relintD 6= ∅. Namely, ∃ x ∈ D meeting every
inequality constraint strictly.

Theorem

Suppose primal is convex and satisfies Slater’s condition. Then strong
duality holds and dual optimum is attained.
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Refined Slater’s condition

If the first k constraint functions are affine, then the following weaker
condition holds: There exists an x ∈ D with

fi (x) ≤ 0, i = 1, · · · , k, fi (x) < 0, i = k + 1, · · · , m, Ax = b.

In other words, x need not have to affine inequalities strictly.

Slater’s condition implies that the dual optimal value is attained when
d∗ > −∞, that is, there exists a dual feasible (λ∗, ν∗) with g(λ∗, ν∗) =
d∗ = p∗.
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Least-squares solution of linear equations

min xT x ⇒ max −(1/4)νTAAT ν − bT ν
s.t. Ax = b s.t.

Since primal is convex and meets Slater’s condition, p∗ = d∗ if primal is
feasible. (Actually, feasibility assumption is not necessary.)

Lagrange dual of LP
Since every constraint in LP is affine, strong duality holds if primal is
feasible. Similarly, if dual is feasible, then strong duality holds.

Strong duality of LP may fail when both primal and dual are infeasible.
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Lagrange dual of QCQP

Recall QCQP,

min (1/2)xTP0x + qT
0 x + r0

s.t. (1/2)xTPix + qT
i x + ri ≤ 0, i = 1, · · · , m,

where P0 ∈ Sn
++, Pi ∈ Sn

+,∀i .

Lagrangian is L(x , λ) = (1/2)xTP(λ)x + q(λ)T x + r(λ), where

P(λ) = P0 +
∑

i λiPi , q(λ) = q0 +
∑

i λiqi , r(λ) = r0 +
∑

i λi ri .

Hence dual is
max −(1/2)q(λ)TP(λ)−1q(λ) + r(λ)
s.t. λ � 0.

Inequality constraint functions of QCQP are not affine, so strong duality holds

when (1/2)xTPix + qT
i x + ri < 0 for all i .
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Entropy maximization

min
∑

i xi log xi dual−−→ max −bT λ− ν − e−ν−1 ∑
i e
−aT

i λ

s.t. Ax ≤ b s.t. λ ≥ 0
1T x = 1

max’zed over ν−−−−−−−−−−→ max −bT λ− log
( ∑

i e
−aT

i λ
)

s.t. λ ≥ 0

Minimum volume covering ellipsoid

min log det X−1 ⇒ max log det(
∑

i λiaia
T
i )− 1T λ + n

s.t. aT
i Xai ≤ 1,∀i s.t. λ � 0

Inequality constraint functions in primal are affine for X , so strong duality
holds when ∃ X ∈ Sn

++ such that aT
i Xai ≤ 1 ∀i , which is always true.

Thus, entropy maximization always has strong duality.
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A geometric interpretation of dual in terms of the set

G = {(f1(x), · · · , fm(x), h1(x), · · · , hp(x), f0(x)) ∈ Rm × Rp × R|x ∈ D}.

For optimization
min f0(x),
s.t. fi (x) ≤ 0, i = 1, · · · , m

hj(x) = 0, j = 1, · · · , p,

its optimal value p∗ can be represented as

p∗ = inf{t|(u, v , t) ∈ G, u ≤ 0, v = 0}.
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Dual function at (λ, ν) is

g(λ, ν)

= inf

{ ∑m
i=1 λiui +

∑p
j=1 νivi + t|(u, v , t) ∈ G

}
= inf{(λ, ν, 1)T (u, v , t)|(u, v , t) ∈ G}.

Thus for any (u, v , t) ∈ G we have

(λ, ν, 1)T (u, v , t) ≥ g(λ, ν),

nonvertical supporting hyperplane in sense of last nonzero coordinate 1.
Suppose λ ≥ 0. Then, t ≥ (λ, ν, 1)T (u, v , t) if u ≤ 0 and v = 0. Thus,

p∗ = inf{t|(u, v , t) ∈ G, u ≤ 0, v = 0}
≥ inf{(λ, ν, 1)T (u, v , t)|(u, v , t) ∈ G, u ≤ 0, v = 0}
≥ inf{(λ, ν, 1)T (u, v , t)|(u, v , t) ∈ G}
= g(λ, ν),

weak duality!

Optimization Lab. Duality A supplementary note to Chapter 5 of Convex Optimization by S. Boyd and L. Vandenberghe



Lagrange dual
Duality

Proof of strong duality
Optimality conditions

Theorems of alternatives

Weak duality
Strong duality
Examples
Geometric interpretation

Consider case m = 1 so that G can be illustrated in R2. Given λ, minimizing
(λ, 1)T (u, t) over G yields a supporting hyperplane with slope −λ:
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For three dual feasible values of λ, including optimum λ∗, strong duality does

not hold; duality gap p∗ − d∗ is positive.
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Consider following epigraph variation of G,

A := {(u, v , t)|fi (x) ≤ ui , ∀i , hi (x) = vi , ∀i , f0(x) ≤ t, for some x ∈ D}
= G + (Rm

+ × {0} × R+).

Then, easy to see

p∗ = inf{t|(0, 0, t) ∈ A},
For any λ ≥ 0, g(λ, ν) = inf{(λ, ν, 1)T (u, v , t)|(u, v , t) ∈ A}, and

Since (0, 0, p∗) ∈ bdA, p∗ = (λ, ν, 1)T (0, 0, p∗) ≥ g(λ, ν).
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Thus strong duality holds iff for some (λ, ν), p∗ = (λ, ν, 1)T (0, 0, p∗) = g(λ, ν),
i.e. ∃ non-vertical supporting hyperplane to A at (0, p∗).
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Consider primal with Slater’s condition: ∃ x̃ ∈ relintD with fi (x̃) < 0, and
Ax̃ = b.

min f0(x)
s.t. fi (x) ≤ 0, i = 1, · · · , m f0, · · · , fm convex

Ax = b.

Theorem

Suppose primal is convex and satisfies Slater’s condition. Then strong duality
holds and dual optimum is attained.

Proof For a simpler proof, introduce little stronger assumptions:

1 Domain D has nonempty interior, i.e. relintD = intD, and

2 rank A = p.

Slater’s cond implies feasibility. Hence case p∗ = +∞ is excluded. If p∗ =

−∞, then weak duality implies d∗ = −∞, and theorem holds vacuously. Hence

we assume throughout p∗ > −∞.
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Primal convexity implies A = G + (Rm
+ × {0} × R+) is convex. We define

second convex set

B = {(0, 0, s) ∈ Rm × Rp × R|s < p∗}.

Then A and B are disjoint. By separating hyperplane thm, ∃ (λ̃, ν̃, µ) 6= 0 and
α s.t.

(u, v , t) ∈ A ⇒ λ̃Tu + ν̃T v + µt ≥ α, (1)

(u, v , t) ∈ B ⇒ λ̃Tu + ν̃T v + µt ≤ α. (2)

From (1), we conclude that λ̃ ≥ 0 and µ ≥ 0, and (2) implies that µt ≤ α for
all t < p∗ or that µp∗ ≤ α. Therefore, we have the following:

m∑
i=1

λ̃i fi (x) + ν̃T (Ax − b) + µf0(x) ≥ α ≥ µp∗. (3)
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Assume µ > 0. Then, from (3),

L(x , λ̃/µ, ν̃/µ) ≥ p∗, ∀x ∈ D.

Hence, by minimizing over x , it follows that g(λ, ν) ≥ p∗ for
λ = λ̃/µ, ν = ν̃/µ. By weak duality, g(λ, ν) ≤ p∗, so g(λ, ν) = p∗. Therefore,
strong duality holds and dual optimum is attained when µ > 0.
Assume µ = 0. From (3),

m∑
i=1

λ̃i fi (x) + ν̃T (Ax − b) ≥ 0, ∀x ∈ D. (4)
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Therefore, for x̃ satisfying Slater’s condition, we have
m∑

i=1

λ̃i fi (x̃) ≥ 0. But,

fi (x̃) < 0, λ̃i ≥ 0 and we conclude λ̃ = 0. Therefore, from (λ̃, ν̃, µ) 6= 0, we
should have ν 6= 0.
From (4),

νT (Ax − b) ≥ 0, ∀x ∈ D. (5)

But, ν̃T (Ax̃ − b) = 0, and since x̃ ∈ intD there exists points in D with

ν̃T (Ax − b) < 0 unless AT ν = 0 which is impossible as rank A = p. A

contradiction to (5).
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Certificate of suboptimality
Complementary slackness
KKT optimality conditions
Solving primal via dual

A dual feasible (λ, ν) is a certificate that p∗ ≥ g(λ, ν). A primal feasible
x is a certificate that d∗ ≤ f0(x).

If x and (λ, ν) are a feasible pair, then

d∗ − g(λ, ν), f0(x)− p∗ ≤ f0(x)− g(λ, ν).

Thus x and (λ, ν) are ε-optimal solutions, where ε = f0(x)− g(λ, ν).

If duality gap is zero, i.e. f0(x) = g(λ, ν), then x and (λ, ν) are an
optimal pair. Therefore, (λ, ν) is a certificate that x is optimal, and vice
versa.
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Solving primal via dual

Suppose an algorithm produces a sequence of primal feasible x (k) and
dual feasible (λ(k), ν(k)) for k = 1, 2, · · · , and εabs > 0 is required absolute
accuracy. Then, the stopping criterion

f0(x
(k))− g(λ(k), ν(k)) ≤ εabs

provides εabs -suboptimal solution x (k), and (λ(k), ν(k)) is a certificate.

Similarly, for a relative accuracy εrel > 0, the following conditions can
work as a proper stopping criterion:

g(λ(k), ν(k)) > 0,
f0(x

(k))− g(λ(k), ν(k))

g(λ(k), ν(k)))
< εrel ,

f0(x
(k)) < 0,

f0(x
(k))− g(λ(k), ν(k))

−f0(x (k))
< εrel .
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Solving primal via dual

Assume strong duality holds, x∗ and (λ∗, ν∗) are primal-dual pair. Then,

f0(x
∗) = g(λ∗, ν∗) = inf

x

(
f0(x) +

m∑
i=1

λ∗i fi (x) +

p∑
j=1

ν∗j hj(x)

)
≤ f0(x

∗) +
m∑

i=1

λ∗i fi (x
∗) +

p∑
j=1

ν∗j hj(x
∗)

≤ f0(x
∗)

From the above, we can derive the following:

x∗ minimizes L(x , λ∗, ν∗) over D (which we assume open) and hence
gradient of ∇xL(x , λ∗, ν∗) vanishes at x = x∗.

λ∗i fi (x
∗) = 0 for i = 1, · · · , m, or

λ∗i > 0 ⇒ fi (x
∗) = 0, fi (x

∗) < 0 ⇒ λ∗i = 0,

known as complementary slackness.
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Certificate of suboptimality
Complementary slackness
KKT optimality conditions
Solving primal via dual

The following four conditions are called KKT conditions (for a problem with
differentiable fi and hi ):

1 Primal feasibility: fi (x) ≤ 0, i = 1, · · · , m; hj(x) = 0, j = 1, · · · , p,

2 Dual feasibility: λ ≥ 0,

3 Complementary slackness: λi fi (x) = 0, i = 1, · · · , m,

4 Gradient of Lagrangian with respect to x vanishes:

∇f0(x) +
m∑

i=1

λi∇fi (x) +

p∑
j=1

νj∇hj(x) = 0.

We have seen if strong duality holds and x and (λ, ν) are optimal, then they

satisfy KKT conditions.
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Proposition

Suppose primal optimization is convex. If x̃ and (λ̃, ν̃) satisfy KKT conditions,
then they are optimal.

Proof From complementary slackness, f0(x̃) = L(x̃ , λ̃, ν̃) From the 4th
condition and convexity, g(λ̃, ν̃) = L(x̃ , λ̃, ν̃). Hence, f0(x̃) = g(λ̃, ν̃).

Corollary

If Slater’s condition is satisfied, x is optimal iff there exist λ, ν satisfying KKT
conditions.
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Examples

Consider equality constrained convex quadratic minimization

min (1/2)xTPx + qT x + r
s.t. Ax = b,

where P ∈ Sn
+. KKT conditions are Ax∗ = b, Px∗ + q + AT ν∗ = 0, or[

P AT

A 0

] [
x∗

ν∗

]
=

[
−q
b

]
.
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Examples(cont’d)

Consider following optimization:

min −
∑n

i=1 log(αi + xi )
s.t. x ≥ 0, 1T x = 1,

where αi > 0. KKT conditions for this problem are

x∗ ≥ 0, 1T x∗ = 1, λ∗ ≥ 0, λ∗i x
∗
i = 0, i = 1, · · · , n,

−1/(αi + x∗i )− λ∗i + ν∗ = 0, i = 1, · · · , n,

Solving the equations, we have

x∗i =

{
1/ν∗ − αi , ν∗ ≤ 1/αi

0 ν∗ ≥ 1/αi
, or x∗i = max{0, 1/ν∗ − αi}

Since 1T x∗ = 1 , we can obtain

n∑
i=1

max{0, 1/ν∗ − αi} = 1.
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Examples(cont’d)

This solution method is called water-filling for the following reason:

αi is ground level above patch i .

1/ν∗ is target depth for flood.

Total amount of water used is
∑

i max{0, 1/ν∗ − αi}.
We increase flood level until we have used total amount of water equal to
one. Then, final depth of water above patch i is x∗i .
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Suppose we have strong duality and an optimal (λ∗, µ∗) is known, and
minimizer of L(x , λ∗, ν∗) is unique (e.g. due to strict convexity). Then,

if the minimizer is primal feasible, then it must be primal optimal.

otherwise, primal optimum can not be attained.

This idea can be helpful when dual is easier to solve than primal.
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Example: Entropy maximization

min f0(x) =
n∑

i=1

xi log xi ⇒ max −bT λ− ν − e−ν−1
n∑

i=1

e−aT
i λ

s.t. Ax ≤ b, 1T x = 1 Dual s.t. λ � 0

Assume weak form of Slater’s condition: ∃ an x > 0 with Ax ≤ b and 1T x = 1,
so strong duality holds and an optimal solution (λ∗, ν∗) exists. Then,

L(x , λ∗, ν∗) =
n∑

i=1

xi log xi + λ∗T (Ax − b) + ν∗(1T x − 1)

is strictly convex on D and bounded below, so it has unique minimizer

x∗i = 1/ exp(aT
i λ∗ + ν∗ + 1), i = 1, · · · , n,

where ai are columns of A. If it is primal feasible, then optimal. Otherwise,

primal optimum is not attained.
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Example: Equal’ty-const’ned separable function
minimization

Objective is called separable when it is sum of functions of individual variables
x1, · · · , xn:

min f0(x) =
n∑

i=1

fi (xi )

s.t. aT x = b.

Lagrangian is

L(x , ν) =
n∑

i=1

fi (xi ) + ν(aT x − b) = −bν +
n∑

i=1

(fi (xi ) + νaixi ),

which is also separable.

Optimization Lab. Duality A supplementary note to Chapter 5 of Convex Optimization by S. Boyd and L. Vandenberghe



Lagrange dual
Duality

Proof of strong duality
Optimality conditions

Theorems of alternatives

Certificate of suboptimality
Complementary slackness
KKT optimality conditions
Solving primal via dual

Example: Equal’ty-const’ned separable function
minimization(cont’d)

Therefore, dual function is

g(ν) = −bν + inf
x

( n∑
i=1

(fi (xi ) + νaixi )

)
= −bν +

n∑
i=1

inf
x

(
(fi (xi ) + νaixi )

)
= −bν −

n∑
i=1

f ∗i (−νai ).

Dual problem is then

max −bν −
n∑

i=1

f ∗i (−νai ).
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Consider a system of inequalities and equalities,

fi (x) ≤ 0, i = 1, . . . , m,
hj(x) = 0, j = 1, . . . , p.

(1)

Assume domain of system (1) is nonempty. Consider the following problem:

min 0
s.t. fi (x) ≤ 0, i = 1, · · · , m

hj(x) = 0, j = 1, · · · , p,
(2)

Its optimal value is p∗ =

{
0, if (1) is feasible
∞, otherwise.

.

So solving (1) is the same as solving (2).
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Dual function of (2) is

g(λ, ν) = inf
x∈D

( m∑
i=1

λi fi (x) +

p∑
j=1

νjhj(x)

)
.

Since f0 = 0, dual is positively homogeneous in (λ, ν) and its optimal value is

d∗ =

{
∞ λ ≥ 0, if g(λ, ν) > 0 is feasible,
0 λ ≥ 0, otherwise.
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Combining this with weak duality, feasibility of (3)

λ ≥ 0, g(λ, ν) > 0 (3)

implies infeasibility of (1). Hence such (λ, ν) is a certificate of infeasibility of
(1).
Conversely, if (1) is feasible, then (3) must be infeasible. Hence feasible x of
(1) is a certificate of infeasibility of (3).

Thus, (1) and (3) are weak alternatives, in sense that at most one of two is

feasible.
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Similarly, following systems are weak alternatives:

fi (x) < 0, i = 1, · · · , m, hj(x) = 0, j = 1, · · · , p. (4)

λ ≥ 0, λ 6= 0, g(λ, ν) ≥ 0. (5)

For, suppose ∃ x̃ that satisfies (4). Then, for any λ ≥ 0, λ 6= 0, and ν,

m∑
i=1

λi fi (x̃) +

p∑
j=1

νjhj(x̃) < 0.

It follows that

g(λ, ν) = inf
x∈D

( m∑
i=1

λi fi (x̃) +

p∑
j=1

νjhj(x̃)

)
≤

m∑
i=1

λi fi (x̃) +

p∑
j=1

νjhj(x̃) < 0.

Therefore, feasibility of (4) leads to infeasibility of (5).
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When a system is convex, and a constraint qualification holds, pairs of weak
alternatives becomes strong alternatives, which implies each of two systems is
feasible iff the other is so.

Strict inequalities

fi (x) < 0, i = 1, · · · , m, Ax = b (1)
λ ≥ 0, λ 6= 0, g(λ, ν) ≥ 0 (2)

We assume ∃ x ∈ relintD satisfying Ax = b. Under this condition, exactly
one of (1) and (2) is feasible.

Nonstrict inequalities
Consider the following system and its alternative:

fi (x) ≤ 0, i = 1, · · · , m, Ax = b, (1)
λ ≥ 0, g(λ, ν) > 0, (2)

If ∃ x ∈ relintD satisfying Ax = b, and optimal value is attained, then (1)
and (2) are strong alternatives.
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Linear inequalities
Consider the system Ax ≤ b. The dual function is

g(λ) = inf
x

λT (Ax − b) =

{
−bT λ AT λ = 0
−∞ otherwise

Thus, the alternative inequality system is

λ ≥ 0, AT λ = 0, bT λ < 0,

and moreover, they are strong alternatives.
Now, consider the system of strict linear inequalities Ax ≺ b, which has the
following strong alternative

λ ≥ 0, λ 6= 0, AT λ = 0, bT λ ≤ 0,

which, in fact, is a Farkas lemma.
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Farkas lemma

Theorem

The system (1) of Ax ≤ 0, cT x < 0 and the system (2) of AT y + c = 0, y ≥ 0
are strong alternatives.

Proof Consider the LP

min cT x ⇒ max 0
s.t. Ax ≤ 0 Dual s.t. AT y + c = 0, y ≥ 0

The primal is homogeneous, and hence

(1) is not feasible ⇒ optimal value of the primal LP is 0.

(1) is feasible ⇒ optimal value of the primal LP is −∞.

Likewise, the dual LP has optimal value

{
0, if (2) is feasible
−∞ if (2) is not feasible

. Since

x = 0 is feasible for the primal LP, we can find the failed case of strong duality,

so we must have p∗ = d∗. Therefore, (1) and (2) are strong alternatives.
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