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Lagrange dual Lagrange dual functions
Lower bounds on optimal value
Examples

ge dual and conjugate
agrange dual problem

Recall our optimization, min{fy(x)| fi(x) <0,i=1,---,m, hj(x) =0,j =1,
. P}

Definition

Lagrangian L : R" x R™ x R? — R is
m P
L(x, A, v) = fo(x) + Y Xifi(x) + > vihi(x)
i=1 j=1

A and v called dual variables or Lagrange multipliers.

Definition

Lagrange dual function g : R™ x R” — R is

£O) = inf L0x A ) = inf (600+ 3000 + D whx) ).

i=1 j=1

Thus g is pointwise infimum of affine functions of (A, v).
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Lagrange dual ag ge dual functions
Lower bounds on optimal value
Examples

dual and conjugate
dual problem

For any A\ > 0 and v, g(\,v) < p*.

Proof For any feasible x, A > 0 and any v, we have > Aifi(x) +
>o7yvjhi(x) <0, and hence L(x, A, v) < fo(x). Therefore, we have

g\ v) = ing L(x,\,v) < L(x, A\ v) < f(x). O
S

Pair (A, v) is called dual feasible when X > 0, and g(\,v) > —oc.
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Lagrange dual ge dual functions
nds on optimal value

dual and conjugate
dual problem

Linear approximation interpretation

Notice our optimization is equivalent to

min fo(x) + Z 1-(fi(x)) + Z h(hj(x)),

i=1 j=1

0 u<o0 0 u=20
oo u>0 + and lo(u):{ oo u#0
If we replace /_(u) and Ih(u) with A\ju and pju respectively, then we get
Lagrange dual function

if I_ and Iy satisfy I_(u) = {

min L(x, A, n) = fo(x) + Z Aifi(x) + Z vjhj(x).

i=1

Since \ju < I-(u) and viu < ly(u) for all u, dual function yields a lower bound

on optimal value.
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Lagrange dual e dual functions
r bounds on optimal value
ples
ual and conjugate
ual problem

Least-squares solution of linear system

min  x'x

T T .
st. Ax=b — L(x,v) =x"x+v (Ax—b)

L(x,v) is convex quadratic in x, and infimum attains when
Vil(x,v) =2x+ATv =0 or x = —(1/2)ATv. Thus Lagrange dual is

gv) = iE\(f L(x,v) = L(—(1/2)ATv,v) = —(1/8)v"AATv — b v.

Thus —(1/4)vTAATY — b™v < inf{xT x|Ax = b} for all feasible pair
(x,v).
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ze dual functions
r bounds on optimal value
Examples

Lagrange dual

dual and conjugate
dual problem

Standard form LP

min  ¢’x T n -
s.t. Ax=bH — L(X7 )‘7 I/) = C X ; )\IXI +v (AX b)
xz0 = —bTv+(c+ATv - N)x

Since g(\,v) is pointwise infimum of x, we have the following:
g(\,v) = inf L(x,\,v)=—bTv+inf(c+ATv — \)x

B —b"v fATU —A+c=0,
- —00 otherwise.
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Lagrange dual ge dual functions
Lower bounds on optimal value

Two-way partitioning

min  xT Wx
s.t. Xf:l,j:l,---,n
Wi; and —Wj;, resp. are costs of having i and j in same set and different sets in

partition.
NP-hard problem. Can obtain lower bounds on optimal value from Lagrange dual:

n
L(x,v) = xTWx—l—z:I/j(xj2 —1) =x"(W +diag(v))x —17v
j=1
— g(v) = infxxT(W +diag(v))x —1Tv
_ —-1Ty W 4 diag(v) = 0
- —00 otherwise

For example, v = —Apin(W)1 is dual feasible yields the bound:

p* > —1T0 = nApin(W).
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Lagrange dual ange dual functions
Lower bounds on optimal value
Examples

Lagrange dual and conjugate
Lagrange dual problem

@ Recall conjugate function f*(y) = sup {y'x—f(x)}.
xedomf

@ Dual and conjugate: a simple case

min  f(x) = L(x,v) = f(x)+vTx
st. x=0 glv) = in?i{(f(xg + v x} = —sup {(—v)"x — f(x)}

@ Dual and conjugate: for problem with linear ineq. and equality constraints

min  fo(x) = g\v) = inf{fo(x)+AT(Ax —b)+v7(Cx—d)}
st. Ax<b = —b"A—dTv+inf {H(x)(ATA+ CTv)Tx}
Cx=d = —b"A—dTv+fF(-ATA=CTy),

where domg = {(\,v)| — ATA — CTv € domf;}.
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Lagrange dual e dual functions
er bounds on optimal value
camples

Lagrange dual and conjugate
Lagrange dual problem

@ Equality constrained norm minimization

0 ifflyll« £1,

min X *
[Ix] b Then f5'(y) = SLXIP{,VTX —f(x)} = { oo otherwise.

st. Ax=b,

Therefore, we have the following dual function:

T, ATy [ b [[ATy[ <1
gW)=—bv—fi(-A y)i{ —00 otherwise
@ Entropy maximization

min  fo(x) = > ; xi log x;

st. Ax<b17x=1, Wheredomf=Ri.

Since f;(y) = 3°; €71, we have dual function

g )= —bTA—v— e WAl pTa_p eI e W,

i=1 i=1
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Lagrange dual ange dual functions
r bounds on optimal value
Examples

Lagrange dual and conjugate
Lagrange dual problem

@ Minimum volume covering ellipsoid

min  fo(X) = logdet X ' n

s.t. aO-T(Xg- < lgi =1,---,m where domfo = 5%

When a solid S is linearly transformed into AS,
vol(AS) = det(A” A)"/2vol(S).

Consider ellipsoid Ex = {z|z” Xz < 1}, image of linear transform X of
unit circle. Volume of Ex is proportional to (det X_1)1/2. Therefore, via
this optimization, can obtain a min vol ellipsoid including a1, ..., an.
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Lagrange dual ange dual functions
r bounds on optimal value
Examples

Lagrange dual and cor
Lagrange dual problem

@ What is the best lower bound from Lagrange dual function?

max  g(\,v)
st. A>0.

Similarly, we can define the dual feasibility and the dual optimality, and
we have

domg = {(\,v)|g(A,v) > —o0}.

@ Lagrange dual problem is a convex optimization problem regardless of
convexity of original problem (or primal problem).
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Lagrange dual ge dual functions
r bounds on optimal value
Examples
Lagrange dual and cor
Lagrange dual problem

Lagrange dual of LP

min  ¢c’x g\ v) = by ATu—A+c=0
st. Ax=b,x>0 EWYI =Y _x otherwise

Unless ATy — A4 ¢ = 0, g is infeasible, so Lagrange dual problem can be
represented as

max —b'v or equvalently, max —b"v
st. ATu—A+c¢c=0 st. Alv+cro0.
A0,

Similarly, if LP has inequality constraints, then Lagrange dual problem is given

as
min ¢’ x = max —b"A

st. Ax<b st. ATA4+c¢c=0
A= 0.
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Weak duality

Duality Strong duality

Exampl
G etric interpretation

Since Lagrange dual provides lower bound for primal,

d* <p’,
where p* and d*, resp. are optimal values of primal and dual problems.
From this weak duality, we have

Primal unbounded below = dual infeasible,
Dual unbounded above = primal infeasible.

Dual problem, due to convexity, is solvable efficiently in many cases. For
example, lower bound on two-way partitioning problem can be computed via
following SDP:

max —1Tv

st. W +diag(v) = 0.

Optimization Lab. ality A supplementary note to Chapter 5 of Convex Optimiza



Weak duality

Duality Strong duality

Examples
Geometric interpretation

@ We say strong duality holds if d* = p*.

@ Strong duality does not hold in general. To guarantee it we need
some constraint qualification such as a Slater-type condition.

@ Slater’s condition: relintD # (). Namely, 3 x € D meeting every
inequality constraint strictly.

Suppose primal is convex and satisfies Slater’s condition. Then strong
duality holds and dual optimum is attained.
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Weak duality

Strong duality

Examples

Geometric interpretation

Duality

Refined Slater’s condition

@ If the first k constraint functions are affine, then the following weaker
condition holds: There exists an x € D with

fi(x)<0,i=1,--- k, fi(x)<0,i=k+1,---,m Ax=b.

In other words, x need not have to affine inequalities strictly.

@ Slater's condition implies that the dual optimal value is attained when
d™ > —o0, that is, there exists a dual feasible (A", ") with g(A*,v") =
d* = p*.
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Weak duality

Duality Strong duality

Examples
Geometric interpretation

@ Least-squares solution of linear equations

min  x'x = max —(1/4)v"AATv —bTv
st. Ax=0b s.t.

Since primal is convex and meets Slater’s condition, p* = d* if primal is
feasible. (Actually, feasibility assumption is not necessary.)

@ Lagrange dual of LP
Since every constraint in LP is affine, strong duality holds if primal is
feasible. Similarly, if dual is feasible, then strong duality holds.

Strong duality of LP may fail when both primal and dual are infeasible.
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Weak duality

Strong duality
Examples

Geometric interpretation

Duality

Lagrange dual of QCQP

Recall QCQP,

min  (1/2)x” Pox +qd x + ro

st. (1/2x"Px+qg'x+r<0,i=1,---,m,
where Py € Sn++7 P; € Si,VI’.

Lagrangian is L(x,\) = (1/2)x" P(A\)x + g(A)"x + r()), where

PO) = Po+ S, 0P, a(N) = a0+ X, Niai r(A) = ro+ 3, Air.
Hence dual is

max  —(1/2)g(\)"P(A) qg(A) + r(A)
s.t. A= 0.

Inequality constraint functions of QCQP are not affine, so strong duality holds
when (1/2)x7 Pix 4+ g/ x + ri < 0 for all i.
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Weak duality

Duality Strong duality

Examples
Geometric interpretation

@ Entropy maximization

min >, xilogx; dual max —b'A—v—e¥1 Ziefaf)\
st. Ax<b s.t. A>0
1"x=1
max'zed over ¥ max —b" X —log (3, e_afTA)
st. A>0

@ Minimum volume covering ellipsoid

min  logdet X * = max logdet(}>, Niaia ) —1"A+n
st.  a] Xa; <1,Vi st. A>=0

Inequality constraint functions in primal are affine for X, so strong duality
holds when 3 X € S, such that a] Xa; < 1 Vi, which is always true.
Thus, entropy maximization always has strong duality.
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Weak duality

Duality Strong duality

Examples
Geometric interpretation

A geometric interpretation of dual in terms of the set
g= {(fi(X), T 7fm(X)a hl(X)a T 7hP(X)7 fO(X)) €R" x RP x R|X € D}

For optimization
min  fo(x),
st. filx)<0, i=1,---,m
hi(x) =0, j=1,---,p,
its optimal value p* can be represented as

p* =inf{t|(u,v,t) € G,u <0,v =0}
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Weak duality

Duality Strong duality

Examples
Geometric interpretation

Dual function at (A, v) is
g\ v)
=inf { S Aiui+ Zle vivi + t|(u, v, t) € g}
=inf{(\,v,1)"(u, v, t)|(u,v,t) € G}.
Thus for any (u, v,t) € G we have
A1) (u, v, t) > g(Av),

nonvertical supporting hyperplane in sense of last nonzero coordinate 1.
Suppose A > 0. Then, t > (X, v,1)"(u, v, t) if u <0 and v =0. Thus,

p* inf{t|(u,v,t) € G,u<0,v =0}
inf{(\,»,1)"(u, v, t)|(u,v,t) € G,u <0,v =0}
inf{(\,v,1) (u, v, t)|(u, v, t) € G}

g(A\v),

v IV

weak duality!
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d

Duality Strong du

Examples
Geometric interpretation

Consider case m = 1 so that G can be illustrated in R?. Given A, minimizing
(X\,1)7(u, t) over G yields a supporting hyperplane with slope —\:
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d
Strong du
Examples
Geometric interpretation

Duality

Aot +t = g(Aa)
MNu+t=g(\*)

Mu+t=g(A1)——

For three dual feasible values of )\, including optimum \*, strong duality does

not hold; duality gap p* — d™ is positive.
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Weak duality

Duality Strong duality

Examples
Geometric interpretation

Consider following epigraph variation of G,

A= {(u, v, t)|fi(x) < ui, Vi, hi(x) =vi, Vi, fo(x) < t, for some x € D}
=G+ (RT x {0} x Ry).

Then, easy to see

p* = inf{t|(0,0,t) € A},
For any A > 0, g(\,v) = inf{(\,,1)"(u, v, t)|(u, v, t) € A}, and
Since (0,0, p*) € bd A, p* = (\,1,1)7(0,0,p*) > g(\, v).
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d

Duality Strong du

Examples
Geometric interpretation

Thus strong duality holds iff for some (X, v), p* = (A, v,1)7(0,0, p*) = g(\, v),
i.e. 3 non-vertical supporting hyperplane to A at (0, p*).

Au+t = g(A)—r

0. 9]
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Proof of strong duality

Consider primal with Slater's condition: 3 X € relintD with f;i(X) < 0, and

AXx = b.
min  fo(x)
st. filx)<0, i=1,---,m fo,---,fm convex
Ax = b.

Suppose primal is convex and satisfies Slater’s condition. Then strong duality
holds and dual optimum is attained.

Proof For a simpler proof, introduce little stronger assumptions:

@ Domain D has nonempty interior, i.e. relintD = intD, and

@ rank A=np.
Slater's cond implies feasibility. Hence case p* = +o0 is excluded. If p* =
—o0, then weak duality implies d* = —oo, and theorem holds vacuously. Hence

we assume throughout p* > —oo.
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Proof of strong duality

Primal convexity implies A = G + (R x {0} x R4) is convex. We define
second convex set

B=1{(0,0,5) e R" x R” x R|s < p"}.

Then A and B are disjoint. By separating hyperplane thm, 3 (A, 7, u) # 0 and

a s.t. .
(n,v,t)eA = Nu+dTvrut>a, (1)
(uyv,it)eB = Nu+dTv4+put<a (2)
From (1), we conclude that A >0 and x> 0, and (2) implies that ut < « for
all t < p* or that up™ < . Therefore, we have the following:

Z Nifi(x) + 07 (Ax — b) + pfo(x) > a > pp*.  (3)
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Proof of strong duality

Assume g > 0. Then, from (3),
L(x, X, /) > p*, ¥x € D.

Hence, by minimizing over x, it follows that g(\,v) > p* for

A= :\/u, v =0U/u. By weak duality, g(\,v) < p*, so g(A\,v) = p*. Therefore,
strong duality holds and dual optimum is attained when p > 0.

Assume p = 0. From (3),

> Xifi(x) + 7T (Ax = b) > 0, Vx € D. (4)
i=1
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Proof of strong duality

Therefore, for X satisfying Slater’s condition, we have Z ;\,-f,-(>”<) > 0. But,
i=1

f.(x) < 0, X\; > 0 and we conclude A = 0. Therefore, from (X, 7, 1) # 0, we

should have v # 0.

From (4),

v (Ax — b) >0, Vx € D. (5)

But, #7 (A% — b) = 0, and since % € intD there exists points in D with
T (Ax — b) < 0 unless A" = 0 which is impossible as rank A = p. A
contradiction to (5). O
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Certificate of suboptimality
Complementa k
optim conditions
olving primal via dual

Optimality conditions

2( A, 1) d p [

A
\4

@ A dual feasible (A, v) is a certificate that p* > g(\,v). A primal feasible
x is a certificate that d* < fy(x).

@ If x and (A, v) are a feasible pair, then
d* - g(Aa V): fb(X) - p* S fb(X) - g(>\7 V)'

Thus x and (\,v) are e-optimal solutions, where € = fy(x) — g(A, v).

@ If duality gap is zero, i.e. fo(x) = g(A,v), then x and (A, v) are an
optimal pair. Therefore, (\,v) is a certificate that x is optimal, and vice
versa.
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Certificate of suboptimality
(.omp\ement‘r ackness
ditions
dual

Optimality conditions

@ Suppose an algorithm produces a sequence of primal feasible x(¥) and
dual feasible (/\("),u(")) for k =1,2,---, and e.ps > 0 is required absolute
accuracy. Then, the stopping criterion

fo(X(k)) _ g(/\(k), V(k)) < €abs

provides €ps-suboptimal solution x, and (AW, 1) is a certificate.

@ Similarly, for a relative accuracy €. > 0, the following conditions can
work as a proper stopping criterion:

fo(x*) — (AW, 1)

(k) (k) 0

g()\ ,V ) > 0, g()\(k) V(k ?) < €rel,

fo(x*) — g(A\®, 1)
()

fo(x¥) <0, < €rel-
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Certificate of suboptimality
Complementary slackness
KKT optimality conditions
Solving primal via dual

Optimality conditions

Assume strong duality holds, x* and (A", ™) are primal-dual pair. Then,

By =) = i (6 + NG+ Do) )

i=1

IN

m p
() + Y NF) + Y v hi(x")
i=1 j=1
< fx")

From the above, we can derive the following:

@ x™ minimizes L(x, \*,v*) over D (which we assume open) and hence
gradient of V,L(x, A", ") vanishes at x = x*.

@ )\ fi(x*)=0fori=1,---,m,or
Af>0=fi(x")=0, fi(x’)<0= X =0,

known as complementary slackness.
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Certificate of :ubuptmmht
Complementar

KKT optimality condltlons
Solving primal via dual

Optimality conditions

The following four conditions are called KKT conditions (for a problem with
differentiable f; and h;):

@ Primal feasibility: fi(x) <0,i=1,---,m; hj(x)=0,j=1,---,p,
@ Dual feasibility: A >0,
© Complementary slackness: \ifi(x)=0,i=1,--- ,m,

@ Gradient of Lagrangian with respect to x vanishes:

Viy(x) +Z)\Vf +Zu,Vh (x) =

i=1 Jj=1

We have seen if strong duality holds and x and (X, v) are optimal, then they
satisfy KKT conditions.
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Certificate of suboptimality
Complementary slacknes:
KKT optimality conditions
Solving primal via dual

Optimality conditions

Proposition

Suppose primal optimization is convex. If X and (5\, ) satisfy KKT conditions,
then they are optimal.

Proof From complementary slackness, fo(%) = L(X, X, 7) From the 4th
condition and convexity, g(X, 7) = L(X, A, ). Hence, fo(X) = g(A\, 7). O

If Slater’s condition is satisfied, x is optimal iff there exist \, v satisfying KKT
conditions.
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KKT optlmallty conditions

Optimality conditions Solving primal via dual

Examples

Consider equality constrained convex quadratic minimization

min  (1/2)x" Px4+q x4+ r
st. Ax=b,

where P € S.. KKT conditions are Ax* = b, Px* +q+A"v* =0, or

=LY
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Certificate of suboptimality
Complementary slacknes:
A o KKT imali iti
Optimality conditions ) optl‘ma i3y gond!tlons
Solving primal via dual

Examples(cont'd)

Consider following optimization:

min = >"7  log(ai + xi)
st. x>0, 17x= 1,
where a; > 0. KKT conditions for this problem are
x*>0,17x* =1, \* >0, A\ix* =0, i=1,---
—1/(ai+x") = A +v* =0, i

Solving the equations, we have

—]_’.4.’”7

« | v —ai, v'<1/o . . )
X; _{ 0 V> 1o or x;, =max{0,1/v" — «;}

Since 17x* =1, we can obtain

Z max{0,1/v" —a;} = 1.

i=1
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Certificate of suboptimality
Complementary slacknes:
KKT optimality conditions

Optimality conditions Solving primal via dual

Examples(cont'd)

This solution method is called water-filling for the following reason:
@ q«; is ground level above patch i.
@ 1/v" is target depth for flood.
@ Total amount of water used is >, max{0,1/v" — o;}.

@ We increase flood level until we have used total amount of water equal to
one. Then, final depth of water above patch i is x;".

1 /%
l/l/

a;
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Certificate of suboptimality
acknes
conditions

Solving primal via dual

Optimality conditions

Suppose we have strong duality and an optimal (\*, ™) is known, and
minimizer of L(x, A*,v") is unique (e.g. due to strict convexity). Then,

@ if the minimizer is primal feasible, then it must be primal optimal.

@ otherwise, primal optimum can not be attained.

This idea can be helpful when dual is easier to solve than primal.
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Certificate of suboptimality
Complementa <
KKT optimali

Optimality conditions Salbfin @l v dhel

Example: Entropy maximization

min  fo(x) = Z x; log x; = max —-b' A—v—e¥! Z e_a/’T’\
i=1
st. Ax<b, 1"x=1 Dual st. =0
Assume weak form of Slater’s condition: 3 an x > 0 with Ax < band 17x =1,
so strong duality holds and an optimal solution (A", ") exists. Then,
L(x,\",v") = EX,’ logx; + A*T(Ax — b) + v*(17x — 1)
i=1
is strictly convex on D and bounded below, so it has unique minimizer
xi=1/exp(a] N +v" +1),i=1,--- ,n,

where a; are columns of A. If it is primal feasible, then optimal. Otherwise,

primal optimum is not attained.
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(.ertmcate of su boptmmht

Optimality conditions Salbiing prlmal via dual

Example: Equal'ty-const'ned separable function
minimization

Objective is called separable when it is sum of functions of individual variables
Xla oo 7Xn:

min  fo(x) = Z fi(xi)
st. a'x= bi
Lagrangian is
L(x,v) = Z filxi)+v(a"x — b) = —bv + Z(f,-(x,-) + vaix;),
i=1 i=1

which is also separable.
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Certificate of suboptimality
Complementary slackness
KKT optimality conditions

Optimality conditions Salbfin @l v dhel

Example: Equal'ty-const'ned separable function
minimization(contd)

Therefore, dual function is

g(v) = —bv+inf <§n:(f,-(x,-) + Va;x,-))

i=1
= —bv+ Z inf ((fi(xi) + vaixi))
=1
—bv — Z " (—vai).
=1

Dual problem is then

max —bv — Z £ (—vai).
i=1
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Weak alternatives
Strong alternatives

Examples

Theorems of alternatives

Consider a system of inequalities and equalities,

fi(x)<0,i=1,...,m,

hi(x)=0,j=1,...,p. (1)

Assume domain of system (1) is nonempty. Consider the following problem:

min 0
st. fi(x)<0, i=1,---,m (2)
hj(x):Oa j:17"'7p7

0, if (1) is feasible
oo, otherwise.
So solving (1) is the same as solving (2).

Its optimal value is p* = {
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Weak alternatives
Strong alternatives

Examples

Theorems of alternatives

Dual function of (2) is

g(\v) = inf (Z,\ fi(x) +ZVJ x))

Since fy = 0, dual is positively homogeneous in (A, v) and its optimal value is

R S A > 0,if g(A,v) > 0 s feasible,
1 0 AX>0, otherwise.
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Weak alternatives
Strong alternatives

Examples

Theorems of alternatives

Combining this with weak duality, feasibility of (3)
A>0,g(Av)>0 3)

implies infeasibility of (1). Hence such (A, v) is a certificate of infeasibility of
(1)-

Conversely, if (1) is feasible, then (3) must be infeasible. Hence feasible x of
(1) is a certificate of infeasibility of (3).

Thus, (1) and (3) are weak alternatives, in sense that at most one of two is

feasible.
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Similarly, following systems are weak alternatives:
filx)<0,i=1,---,m, hi(x)=0,j=1,---,p. (4)

A=0, A#0, g(Av) >0. (5)
For, suppose 3 X that satisfies (4). Then, for any A >0, A #0, and v,

m p
Z )\,‘f;'()?) + Z I/jhj(;() <0
i=1 j=1
It follows that
m P
g(\v) = inf (Z Nifi(%) + Zu, x)) <D ONA(R) D vihi(%) <0
i=1 j=1

Therefore, feasibility of (4) leads to infeasibility of (5).
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When a system is convex, and a constraint qualification holds, pairs of weak
alternatives becomes strong alternatives, which implies each of two systems is
feasible iff the other is so.

@ Strict inequalities
filx) <0, i=1,---,m Ax=»b (1)
A0, A#£0, g(Av) >0 (2)

We assume 3 x € relintD satisfying Ax = b. Under this condition, exactly
one of (1) and (2) is feasible.

@ Nonstrict inequalities
Consider the following system and its alternative:

fi(x) <0, i=1,---,m, Ax=b, (1)
A=0,g(A\v)>0, )

If 3 x € relintD satisfying Ax = b, and optimal value is attained, then (1)
and (2) are strong alternatives.
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Linear inequalities
Consider the system Ax < b. The dual function is

T T
T oy _ ) —bA ATA=0
g = ”;f)\ (Ax—b) = { —oco  otherwise
Thus, the alternative inequality system is
A>0, ATA=0, b"A<0,

and moreover, they are strong alternatives.
Now, consider the system of strict linear inequalities Ax < b, which has the
following strong alternative

A>0, A#£0, ATA=0, b'A<0,

which, in fact, is a Farkas lemma.
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Farkas lemma

The system (1) of Ax < 0,c” x < 0 and the system (2) of ATy +c =10,y >0
are strong alternatives.

Proof Consider the LP

min ¢’ x = max 0
st. Ax <0 Dual s.t. ATy+c:O,y20

The primal is homogeneous, and hence
@ (1) is not feasible = optimal value of the primal LP is 0.

@ (1) is feasible = optimal value of the primal LP is —oo.
0, if (2) is feasible

if (2) is not feasible
x = 0 is feasible for the primal LP, we can find the failed case of strong duality,

so we must have p* = d*. Therefore, (1) and (2) are strong alternatives.
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Likewise, the dual LP has optimal value . Since



	Lagrange dual
	Lagrange dual functions
	Lower bounds on optimal value
	Examples
	Lagrange dual and conjugate
	Lagrange dual problem

	Duality
	Weak duality
	Strong duality
	Examples
	Geometric interpretation

	Proof of strong duality 
	Optimality conditions
	Certificate of suboptimality
	Complementary slackness
	KKT optimality conditions
	Solving primal via dual

	Theorems of alternatives
	Weak alternatives
	Strong alternatives
	Examples


