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Chapter 5 Stress — Strain Relation

5.1 General Stress — Strain system

Parallelepiped, cube

STRESS-STRAIN RELATIONS

27

5.1.1 Surface Stress

Surface stresses: {normal stress — O,

shear stress — Ty s Tx

. AF
O-xx = O-x = hm : . AFY 1 AF
aA—0 AA( Txy :AlAlme—A TXZ :AlAlme A z
(AA, =AyAZ) A A
. AF
7, = lim —=* AF
y AA,—0 AA\/ ny = Gy = ]AlmOA—y Tyz :Algymo iFZ
(AA, =AXAZ) A &
. AF
r, = lim —* . AF, . AF,
A0 AA Ty :Além0 A 0,=0,= I/im0 A
(AA, =AXAY) A ;



Ch 5. Stress — Strain Relation

where AF, ,AFy, AF, = component of force vector AF

AF, — acting in the direction of the x-axis

AA, = area of the x- face of the element = AYAZ

AA, = AXAz
AA, = AXAy
esubscripts
O, : subscript indicates the direction of stress

X

Ty 1st - direction of the normal to the face on which 7 acts

2nd - direction in which 7 acts

egeneral stress system: — stress tensor

~ 9 scalar components

XX Xy
TYX yy yz
Tx sz o

[Re] Tensor:

~ an ordered array of entities which is invariant under coordinate transformation; includes
scalars & vectors
~ 3"

Oth order — 1 component, scalar ( mass, length, pressure)
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Ch 5. Stress — Strain Relation

Ist order — 3 components, vector (velocity, force, acceleration)

2nd order — 9 components (stress, rate of strain, turbulent diffusion)

At three other surfaces,

0
o, =0, + %2 Az
oz
' (%xy
Ty =Ty + x AX
ot
7, =1, + —=Ay
oy
0
T, =17, + Tux Az (5.1
0z

@ Shear stress is symmetric.

— Shear stress pairs with subscripts differing in order are equal.

[Proof]

In static equilibrium, sum of all moments and sum of all forces equal zero for the element.
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Ch 5. Stress — Strain Relation

First, apply Newton's 2nd law

du
ZF_mE

Then, consider Torque (angular momentum), T

d d , d dw
T=—(mu)=—(>rmo)=—Iw)=1—
2T =g (rm) =g (rme) = (lo) =1~

where | = moment of inertia= r’m

I' = radius of gyration

do :
—— = angular acceleration
dt
Thus,
do
dT=mr’— )
dt

Now, take a moment about a centroid axis in the z-direction

AX Ay  AXAyAz

LHS = 3T = (AyAzr, ) ==~ (v, dxaz) - ===z, - 7,,)

dw dw
RHS = pdvolr’ — = AXAyAz pr> —
P dt YAP 4t

- (7 = 7y ) AXAYAZ = 2AXAYAzZ pr? Z—i)
After canceling terms, this gives

2
Ty Ty =2pr rr
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Ch 5. Stress — Strain Relation

lim r*—0

AX,Ay,Az—0

[Homework Assignment-Special work]

Due: 1 week from today

1. Make your own “Stress Cube” using paper box.

5.1.2 Strain components

o Strain JLnormal strain: & < linear deformation

shear strain: ¥ <« angular deformation

I 4y

-0
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Ch 5. Stress — Strain Relation

[Re] displacement vs. deformation

i) Displacement (translation): &, 77, §

O(x,y,z) > O'(x+¢&, y+n, 2+<)

i1) Deformation: due to system of external forces

OABC—O'A'B'C'

[Cf] Motion
[ translation

rotation
[Cf] Deformation
[ Linear deformation

Angular deformation

(1) Deformation

1) Normal strain, &
oC
_ change in length o'c
original length
X+ AX —Ax (x+

0C-0C . {( " +95+ax 95 o

g, =lim——— = lim
Ax—0 OoC Ax—0 AX OX
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O'A'-0A
OA

g

"

{(y+Ay+n+Z’y7ij—(y+n)}—Ay

on

= lim
Ay—0

Ay oy

~ & 1is positive when element elongates under deformation

2) Shear strain, ¥

~ change in angle between two originally perpendicular elements

For XY-plane

Yy = lim (6,+6,)= lim (tand,+tan6,)

AX,Ay—0

CD

AX,Ay—0

AX,Ay—0

O’D

on 0¢
w - ~ t——
Y oox oy

L% o
oy ox

ZX :%4_6_5
07 OX
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Ch 5. Stress — Strain Relation

—

(2) displacement vector O
5= 57 + 77] + ¢ k
(3) Volume dilation

change of volume of deformed element
original volume

(Ax Lo ij{Ay + 8;7 AYJ(AZ N j— AXAYAZ

_dav) _

€
AV

AXAYAz

;a—§+a—n+%:gx+e + g
oX oy oz g

e=¢, + ¢, + &

8_5 + 8_77 + 6_§ = V-S‘ --- divergence

e=
ox oy 0z

5.2 Relations between Stress and Strain for Elastic Solids

5.2.1 Normal Stresses

Hooke's law: stress is linear with strain

in which E = Young's modulus of elasticity
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Ch 5. Stress — Strain Relation

&g, =elongation in the X — dir . due to normal stress, o,

. ., O
y —dir. : 8y:Ey
z—dir. : 5;:&
E

Now, we have to consider other elongations because of lateral contraction of matter under

tension.
g, = elongation in the X — dir . due to o,
g," =elongation in thX —dir. dueto o,
Now, define
£'=—ng = (5.9)
X y E
g =-Nng, =-n—=+ (5.10)

where N = Poisson's ratio

Thus, total strain &, is

(5.12)
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Ch 5. Stress — Strain Relation

5.2.2 Shear Stress

~Hooke’s law 7, =Gy,

Ty, On 0
7/Xy :_y:_n+_§
G ox oy

T, 0& O
]/yz :_y:_§+_77
G oy oz
_Tw 05 05

=6 T e ex

where G = shear modulus of elasticity

= E (5.14)
2(14+n) .
m Volume dialation
1
£=¢€ +gy+eZ=E[ax—n(0'y+0'Z)]
1
+E|:0y — n(UZ +Gx):|
1
+E[az -n(o,+a,)]
1
:E[(l_zn)(ax +0, +JZ):| (5.15)
[] g = arithmetic mean of 3 normal stresses
— 1
O':E(O'X+O'y+0'y) (5.16)
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Ch 5. Stress — Strain Relation

From Eq. (5.12), (5.14) and (5.15)

o =2G{gx+ ne }
1-2n

X

Therefore

xy — Cyx ox oy
sz = Tyz = G(a—§+ anj
oy oz

[Proof] Eq. (5.17) & (5.18)

1
(5.15) ee=E(1_2n)(ox +o,+0,)

(5.12) —¢&, =é[ax —n(o, +0,)]

E
2(1+n)

(5.14) »G =

— E=2G(l+n)
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Ch 5. Stress — Strain Relation

1) Combine (A) and (B)

n N =20 o vV o o s
+(1+2n) (1-2n) E (O-x Oy O-z) (O'x o O'Z)
|
&, —E[O'X—n(ay+az)}
n l+n
e+e, =——0,
(1-2n)
UXZ_E_{%+_ : e} (D)
I+n (1-2n)

Substitute (C) into (D)

n
no, =26 + e — Eq. (5.17
" { (1-2n) } T o4

i1) Subtract (5.16) from (5.17)

— n 1
o,—oc=2G|¢& + e|l-—(o,+0, +0, E
" { (1—2n)} 3( 1) 5
. . E
Substitute (A) into (E); o, +o,+0,= e
(1-2n)
-, RHS of (E)=2G{5X+ n e}—l E .
(1-2n) | 3(1-2n)
I1+n
:268X+{(2Gn —ézG(Hn)}e:zG &, n_ 3 e
1-2n) 3 (1-2n) (1-2n) (1+2n)
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Ch 5. Stress — Strain Relation

1
-2G _5(1—2n)

&, +
(1-2n)

=2G (gx —%ej — Eq. (5.18)

5.3 Relations between Stress and Rate of Strain for Newtonian Fluids

Experimental evidence suggests that, in fluid, stress is linear with time rate of strain.

— stress oc g(strain)
ot

— Newtonian fluid (Newton's law of viscosity)
[Cf] For solid,

stress oc strain

5.3.1 Normal stress

For solid, Eq. (5.18) can be used as

Hookeian elastic solid: o, — o= Z(Ej(é‘ - Ej
AN

By analogy,

Newtonian fluid: &, — o= Z(EJE((CJX — EJ (5.20)
L J ot 3

Nowset U= ? = dynamic viscosity
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o,—0=2u————u— (5.21)

By the way,
gng—g;ezv-g o on Y
X _o¢ _om . 0¢ o
u ot v o w o (&,n,¢ = displacement)
Therefore,
%za(é‘fj (5):5_“ (5.22)
ot ot\ox/) ox\o OX
@:v.@:v a:8_+@+@ (5.23)
ot ot - ox oy oz
o=Ei+nj+ck
- 85: re i v
qza—=UI+VJ+Wk
- ou OV Ow
Q=
ox oy oz

Eq. (5.21) becomes

_ o) B
o, :o'+2,u2—::—§y(v.q)

For compressible fluid,

o, :g+2ﬂ(2_§_§ﬂ(v’a)

ay:g+2y%—§y(v.a)
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2 (v -q) (5.24)

o =0+2u——
’ ﬂaz 3

For incompressible fluid,

de

— =V -0 =0 < time rate of volume expansion=0

dt

-V a =0 — Continuity Eq.

Therefore, Eq. (5.24) becomes

— ou
o, =0+2u—
OX

o, :E+2,u@

— oW
o,=0+2u—
0z

5.3.2. Shear stress

y7i

By following the same analogy  /
on o9& lqja on  9&
Py (8x ayj (Lz Gt[ﬁx oy

”ax(jf}ay(atk[ax*aw

on_, o
ot E‘

u

5-15



Ch 5. Stress — Strain Relation

oV ou

Ly Tt = H &-i-g
ER ] P o
T,=7T,=U a_u+@j

Xz 2% 0Z OX

[Appendix 1]
ov  ou
z-xy = Tyx - 'u(&-l_a_yj
/7
4
/
! T
e
Ty
/ %
=
D) 7,7,
|/ T2y
_ 1£§Wﬁw,j/JA1I.
/’l( Vi
7
€
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i) 7,,7,"
2" A /
— o Uy
/ ./ ] - {fﬁ?»au
< ?é x
?‘g x -~ 2

111) composition

5.3.3 Relation between thermodynamic pressure P and mean normal stress &
1) Assume viscous effects are completely represented by the viscosity 4 for

incompressible fluid

_ 1
g:—p:§(0x+0'y+0'2) (5.26)

~ minus sign accounts for pressure (compression)

2) For compressible fluid

g==p+u(v-q)
in which ' = 2nd coefficient of viscosity associated solely with dilation

= bulk viscosity
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Since, dilation effect is small for most cases

#'(v-q)—0

L E=—p

For zero-dilation viscosity effects (4" = 0), (5.24) becomes

o,=—p+2 -
" Hox
ov

o,=—p+2u—-—
' oy

p
|

(2
(2

gjﬂ(v'a)
gjﬂ(v'a)

oW -
+2ﬂ5—@ﬂ(vq)

(5.29)

Normal
stress

/
_/

pressure

]

m Shear stresses in a real fluid

S—
Xy yx_/u OX ay
ro=r = u X
y =Ty = H 5y o7
T =7 :lLl a_u_f_@j
xz X o7 Ox

Viscous
effects

(5.30)

For zero viscous effects ( M= O) — 1nviscid fluids in motion and for all fluids at rest

X y z

=0 :5:—

p
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[Appendix 2] Bulk viscosity and thermodynamic pressure

— Boundary-Layer Theory (Schlichting, 1979) pp. 61-63

g=-p+u'(V-q)
If fluid is compressed, expanded or made to oscillate at a finite rate, work done in a

thermodynamically reversible process per unit volume is

- _de
W=pV.g= PE ~ dissipation of energy

where 1'=bulk viscosity of fluid that represents that property which is responsible for

energy dissipation in a fluid of uniform temperature during a change in volume at a finite rate
= second property of a compressible, isotropic, Newtonian fluid

[Cf] u = shear viscosity = first property

Direct measurement of bulk viscosity is very difficult.
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[Appendix 3] Normal stress

Normal stress = pressure + deviation from it

o,=—p+o,’

- [
o,=—p+o,
JZ:_p—l_GZ'

Thus, stress matrix becomes

Normal stresses are proportional to the volume change (compressibility) and corresponding

components of linear deformation, a, b, c.

Thus,
o,=—p+A(a+b+c)+2ua
Gyz—p+/1(a+b+c)+2,ub
o,=—p+A(a+b+c)+2uc

where A= compressibility coefficient

5-20



Ch 5. Stress — Strain Relation

Homework Assignment # 3

Due: 1 week from today

5-1. Verify Eq. (5-14)
G-—t
2(1+n)

5-3. Consider a fluid element under a general state of stress as illustrated in Fig. 5-1. Given
that the element is in a gravity field, show that the equilibrium requirement between surface,

body and inertial forces leads to the equations

80‘X+5Tyx+6rZX+ 9 = pa
v A
87W+80'y+8rxy+ _a
x oy ax P TAY
8rxz+afyz+8az+ 9 = pa
x oy e PHT

5-4. Consider a fluid in two-dimensional motion. Using plane polar coordinatesr ,&, and z,

show that the rate of strain components are

os,
ot or

+
ot r o6

_ OV 08y 1OV Ve OFyp _ Vg 1OV _
r’ot o rofd r

5
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