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Chapter 5 Stress – Strain Relation 

 

5.1 General Stress – Strain system 

Parallelepiped, cube 

 

 

 

           

 

 

 

 

5.1.1 Surface Stress 

 Surface stresses:   normal stress – x   

shear stress   – ,xy xz   
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where , ,x y zF F F    = component of force vector F


 

xF – acting in the direction of the x-axis 

xA = area of the x- face of the element = y z   

yA x z     

zA x y     

 

•subscripts 

x :  subscript indicates the direction of stress  

xy :  1st - direction of the normal to the face on which   acts  

2nd - direction in which  acts  

 

•general stress system:  stress tensor  

~ 9 scalar components  

xx xy xz

yx yy yz

zx zy zz

  
  
  

 
 
 
 
 

 

 

[Re] Tensor :   

~ an ordered array of entities which is invariant under coordinate transformation; includes 

scalars & vectors 

~ 3n  

0th order   – 1 component, scalar ( mass, length, pressure) 
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1st order   – 3 components, vector (velocity, force, acceleration) 

2nd order – 9 components (stress, rate of strain, turbulent diffusion) 

 

At three other surfaces, 
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                   (5.1) 

 

◈ Shear stress is symmetric. 

→ Shear stress pairs with subscripts differing in order are equal. 

→ xy yx   

 

 [Proof] 

In static equilibrium, sum of all moments and sum of all forces equal zero for the element. 
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First, apply Newton's 2nd law 

 
du

F m
dt

  

 

Then, consider Torque (angular momentum), T  

   2( ) ( ) ( )
d d d d

T rmu r m I I
dt dt dt dt

      

 

where I = moment of inertia = 2r m  

  r = radius of gyration 

   
d

dt


= angular acceleration 

Thus, 

   
2 d

T mr
dt


        (A) 

 

Now, take a moment about a centroid axis in the z-direction 

        
2 2 2

xy yx xy yx

x y x y z
y z x zLHS T                 

2 2d d
RHS dvolr x y z r

dt dt

        

    22xy yx

d
x y z x y z r

dt

           

After canceling terms, this gives 

 22xy yx

d
r

dt
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2

, , 0
lim 0
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  0xy yx    

  xy yx    

 

[Homework Assignment-Special work] 

Due:  1 week from today 

 

1. Make your own “Stress Cube” using paper box. 

 

 

5.1.2 Strain components 

 

○ Strain  normal strain:        ← linear deformation 

    shear strain:       ← angular deformation 
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[Re] displacement vs. deformation 

i) Displacement (translation): , ,    

   ' , ,, ,O O x y zx y z        

 

ii) Deformation: due to system of external forces 

' ' ' 'OABC O A B C  

 

[Cf] Motion  

translation 

rotation 

 

[Cf] Deformation 

 Linear deformation 

Angular deformation 

 

(1) Deformation 

1) Normal strain,   

change in length

original length
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0 0

O'A'
lim limy y y

y y y yy
yOA

OA y y

 


   

                 
 

 

 

x z

 



    

~   is positive when element elongates under deformation 

 

2) Shear strain,   

~ change in angle between two originally perpendicular elements 

For xy –plane 
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                            (5.4) 

zx z x

   
 
 

 

 

C’D 

O’D O’E 

A’E 
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(2) displacement vector 


 

i j k     
   

 

 

(3) Volume dilation 

 

change of volume of deformed element

original volume
e   

 
y y x y zx x z z

yd x zVe
V x y z

                            
   

 

x y zx y z

       
     

  
 

x y ze                   (5.6) 

e
x y z

     
     

  


   --- divergence               (5.7) 

 

5.2 Relations between Stress and Strain for Elastic Solids  

5.2.1 Normal Stresses 

 Hooke's law: stress is linear with strain  

x xE   
 

1
x xE

   

 

in which E  = Young's modulus of elasticity 
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x

 = elongation in the x dir . due to normal stress, x  

. : y
yy dir

E


   

. : z
zz dir

E

   

 

Now, we have to consider other elongations because of lateral contraction of matter under 

tension. 

'x  = elongation in the x dir . due to y  

''x  = elongation in th x dir . due to z  

 

Now, define 

' y
x yn n

E


    

                                              (5.9) 

    '' z
x zn n

E

                                            (5.10) 

 

where n  = Poisson's ratio 

Thus, total strain x is 

   1
' '' z

y z y zx x x x x

n
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E E E
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x yz z n
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                                         (5.12) 
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5.2.2 Shear Stress 

~ Hooke’s law  xy xyG   
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    where G = shear modulus of elasticity 

      
 2 1
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                                                   (5.14) 

 

■ Volume dialation 
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  1
1 2 x y zn

E
                       (5.15) 

 

■   = arithmetic mean of 3 normal stresses 

 1

3
x y y                                         (5.16) 
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       From Eq. (5.12), (5.14) and (5.15) 
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                                      (5.18) 
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y z

 
 

       
 

xz zx G
z x

        
  

                                           (5.19) 

 

[Proof] Eq. (5.17) & (5.18) 

(5.15) →e =   1
1 2 x y zn

E
                              (A) 

(5.12) →  1
y zx x n

E
                                         (B) 

(5.14) →
2(1 )

E
G

n



 → 2 (1 )E G n                           (C) 
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i) Combine (A) and (B)  
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Substitute (C) into (D) 
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     →  Eq. (5.17) 

 

ii) Subtract (5.16) from (5.17) 
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   → Eq. (5.18) 

 

 

5.3 Relations between Stress and Rate of Strain for Newtonian Fluids 

Experimental evidence suggests that, in fluid, stress is linear with time rate of strain.  

→  stress strain
t





 

→ Newtonian fluid (Newton's law of viscosity) 

[Cf]  For solid,  

 stress strain  

 

5.3.1 Normal stress 

 For solid, Eq. (5.18) can be used as 

Hookeian elastic solid: 
2

2
3

x x

eF

L
        

  
 

 

By analogy, 

Newtonian fluid: 
2

2
3

x x

eFt
tL

  
           

                  (5.20) 

Now set  
2

Ft

L
   = dynamic viscosity 
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                                   (5.21) 

 

By the way, 

;x e
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Therefore, 
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Eq. (5.21) becomes 
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For compressible fluid, 

 2
2

3x

u
q

x
   

    



 

 2
2

3y

v
q

y
   

    



 

, , ( , , displacement)u v w
t x t

       
   
  

i j k     
   

 

q ui v j wk
t


   


   
 

u v w
q

x y z

  
    

  


 



Ch 5. Stress – Strain Relation 

5-15 

 2
2

3z

w
q

z
   

    



                                 (5.24) 

 

For incompressible fluid,  

0
de

q
dt

  


 ← time rate of volume expansion=0 

0q 


 → Continuity Eq.  

 

Therefore, Eq. (5.24) becomes 
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5.3.2. Shear stress 

By following the same analogy 
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xy yx
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[Appendix 1] 

xy yx

v u

x y
  

       
 

 

 

 

 

 

 

 

i) , 'xy yx   
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ii) , 'yx yx   

 

 

 

 

 

iii) composition 

 

 

 

 

 

5.3.3 Relation between thermodynamic pressure p  and mean normal stress   

1) Assume viscous effects are completely represented by the viscosity   for  

incompressible fluid  

 1

3
x y zp                            (5.26) 

~ minus sign accounts for pressure (compression) 

 

2) For compressible fluid 

 'p q     


 

in which  '  = 2nd coefficient of viscosity associated solely with dilation  

  = bulk viscosity  
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Since, dilation effect is small for most cases 

  ' 0q  


 

p    

 

For zero-dilation viscosity effects ( '  = 0), (5.24) becomes 
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■ Shear stresses in a real fluid 

xy yx

v u

x y
  

       
 

zy yz

w v

y z
  

       
 

xz zx

u w

z x
        

  
                                     (5.30) 

For zero viscous effects  0  → inviscid fluids in motion and for all fluids at rest 

x y z p         

0xy yz zx      

Normal 
stress pressure 

Viscous 
effects 



Ch 5. Stress – Strain Relation 

5-19 

[Appendix 2] Bulk viscosity and thermodynamic pressure  

→ Boundary-Layer Theory (Schlichting, 1979) pp. 61-63 

 

 

 

 

 

 

 

 'p q     


 

If fluid is compressed, expanded or made to oscillate at a finite rate, work done in a 

thermodynamically reversible process per unit volume is 

de
W p q P

dt
   


  ~  dissipation of energy 

where ' = bulk viscosity of fluid that represents that property which is responsible for 

energy dissipation in a fluid of uniform temperature during a change in volume at a finite rate  

= second property of a compressible, isotropic, Newtonian fluid  

[Cf]   = shear viscosity = first property 

      

' 0 , p     

' 0 , p     

 

Direct measurement of bulk viscosity is very difficult. 

 



Ch 5. Stress – Strain Relation 

5-20 

[Appendix 3]  Normal stress 

Normal stress = pressure + deviation from it  

'x xp     

'y yp     

'z zp     

 

Thus, stress matrix becomes  

 

'0 0

'0 0

'0 0

x xy xz

yz y yz

zx zy z
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Normal stresses are proportional to the volume change (compressibility) and corresponding 

components of linear deformation, a, b, c.  

 

Thus, 
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where  = compressibility coefficient 
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Homework Assignment # 3 

Due: 1 week from today 

 

5-1. Verify Eq. (5-14) 
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5-3. Consider a fluid element under a general state of stress as illustrated in Fig. 5-1. Given 

that the element is in a gravity field, show that the equilibrium requirement between surface, 

body and inertial forces leads to the equations 

yxx zx
x xg a

x y z
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5-4. Consider a fluid in two-dimensional motion. Using plane polar coordinates r , , and z , 

show that the rate of strain components are 
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