5.1 Mass Transport of Contaminants in Subsurface

5.1.1 Mechanisms of Mass Transport

Principal mechanisms for mass transport
- Advection
- Dispersion/Diffusion

- Reactions: degradation, precipitation, adsorption, partitioning, ion exchange, etc.
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where C = concentration of a contaminant [M/L3];
v, = seepage velocity (or average linear velocity) [L/T];

D = diffusion coefficient of the contaminant [LZ/T 1; and

z = travel distance [L].
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where D, = hydrodynamic dispersion coefficient;
D,, = molecular diffusion coefficient; and

D' = mechanical dispersion coefficient.

where a = dispersivity [L].

5.1.2 Mass Transport Model

Overall Mass Transport = Mass Transport due to Advection

+ Mass Transport due to Diffusion/Dispersion

Mass Transport due to Advection
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Fig. 5.1 Elemental control volume for mass transport
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whereMy; = mass flux into the unit volume along x direction

A{r,nut:
= { e Ci+ A ( q,- Oy (Ay-Az)

g, C
=(qx,i'cl'+? Ax) (Ay Ay)

whereMy, = mass flux out from the unit volume along x direction
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where, n, = effective porosity.
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Overall Mass Transport

iC _

5, =Dy Vv *C—v-VvC ( vC = Divergence of C)

for one-dimensional case

5.1.3 Mitigation Mechanisms

(1) Biodegradation

(2) Ion Exchange

(3) Precipitation

5.1.4 Estimation of Mass Transport Parameters

Seepage velocity

wherev = specific discharge [L/T];
O = flow rate [LY/TJ;
A = cross-sectional area [Lz];
K = hydraulic conductivity or permeability [L/T];
Ah = hydraulic head difference [L];
Al = distance along the fluid flowing direction [L]; and



i = hydraulic gradient.

Effective porosity

Total porosity (n;) is readily measurable.
Relationship between effective porosity and total porosity is case-dependent.

Typical compacted clay liner, n. = 90% of n, (Kim, et al., 2001).

Using the olumn test with tracers, effective porosity can be estimated.
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Fig 5.2 Breakthrough concentration data and mathematical breakthrough curve

Partition Coefficient

- Many previous studies have reported that the partition coefficients estimated from batch tests
and column tests are significantly different.

- Partition coefficient estimation is also affefted by the water chemistry (e.g., pH, DOM,
temperature, etc.)

- The effect of solid:liquid ratio in batch test on the estimated partition coeffixFent
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Fig. 5.3 Effect of soil:solution ration on the observed partition coefficient of between soil and

water (Kim, et al., 2003)

5.1.5 Prdiction of Contaminant Movement
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Ogata and Banks (1961)
Initial condition:
C(z,0) = 0 0<z< o
Boundary conditions:
CO,p) = Co 0 <t; and
C(oo,t) = 0 0<t.

_C, { Z*VZ'I} ( VZ'Z) { Z+V,/-t}]
C(Z,z)—72 erfe VR Dot 'I'exp 70/7 erfc VR AT,

[e%e}

erfe( X):ﬁ . er exp (—u? du

whereerfc = complementary error function; and

exp = exponential function.



Table 5.1 Sorption isotherm models and their corresponding retardation equations
Isotherm Isotherm model Retardation equation
Cs = K/) - Cl
. where C, = solid phase concentration; (1-n,)
Linear Ri=1+——— -p, K,
K, = partition coefficient (or 1,
model . . .
distribution coefficient); and [Where ps = soil solid density.
C; = liquid phase concentration.
. (1—n,)
Freundlich C,=K,~C, " Re=1+ n, s
model |where K; and n; = Freundlich constant. n-1
“Kp G
C = &, K- C,
Langmuir s 1+K,-C, P14 (1-n)-p, @, K,
model |where Q, = saturation constant; and ! n,- (1+K,-C)*
K; = Langmuir constant.
linear isotherm model (Vermeulen and Hiester, 1952).
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where Ry = Retardation factor (Hashimoto et al., 1964).
Initial condition:
C(z,0) = 0 0<z<
Boundary conditions:
CO,p) = Co 0 < t; and
C(oo,t) = 0 0<t.
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Lindstrom et al., 1967; Gershon and Nir, 1969; and van Genuchten and Alves, 1982

Initial condition:
(20) = C,;

Boundary conditions:
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Peclet number =

(Perkins, et al., 1963)

whered = mean particle diameter.

Peclet number > 6 : dispersion dominant zone; and

Peclet number < 0.02 : diffusion dominant zone.

Shackelford (1994)

where P. = column Peclet number; and
L = travel distance [L].

P. > 50 : advection dominant zone; and

P. < 1 : diffusion dominant zone.



5.2 Mass Transport through Geomembranes

5.2.1 Mechanisms of Mass Transport

(i) Partitioning between leachate and geomembrane;
(i1) Diffusion within the geomembrane;

(iii) Partitioning between geomembrane and groundwater.
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Fig. 5.3 Contaminant transport mechanisms through a composite liner system consist of

geomembrane and compacted soil liner

(1) Partitioning

Cou
K=pey- C,

where K = partition coefficient [dimensionless];
Peu = density of geomembrane [M/L3];
Com = concentration of a solute in geomembrane [M/M]; and
C; = concentration of the solute in the solution [M/L].

(2) Diffusion

Fick's law

J diffusion DV CGM



and

%;M =V Cyy
where D = diffusion coefficient [LZ/T].
Permeation
P = DK

where P = permeability coefficient.

(3) Physical Damage on Geomembranes
Giroud and Bonaparte (1989)

- High QA/QC 1 hole/acre (= 247 holes/kmz)
- Low QA/QC 10 holes/acre.

Pin holes (d << t,): Poiseuille's equation for flow through a capillary tube.

nep, g h," d’
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Q:

where Q = leakage rate through a geomembrane hole [L/T];

Pw
hPV

d = diameter of hole;

density of water;

water height on the top of geomembrane;
nw = dynamic viscosity of water; and

t, = thickness of geomembrane.

Holes (d > t,): Bernoulli's equation for free flow through an orifice.

RQ=Cpx-a-\ 2-g-h

w

where Cp = dimensionless coefficient (= 0.6 for sharp edge); and

a = hole area.



For composite liner system

In the case of good contact;

Q: 0.21- A 70.9 . 20.1 -k 0.74

w )

In the case of poor contact;

Q: 1 15 . h 0.9 . 20.1 . k,0'74
whereQ = (m3/sec);
hy = (m);
a= (mz); and

ks = hydraulic conductivity of underlying soil liner (m/sec)

Assumptions:
(i i< 2

(i) T = 20°C (or @, = —"2 ., ;

Ny, 7
(i11) 1x10™"° m/sec < ky < 1x10° m/sec; and

(v) FHFAAFTEY FR W T PR EALY BRAS > k.

5.22 Estimations for mass Transport Parameters

(1) Batch test

Peom” (C/,Uicl,e) ) V]

K:
My - C/,e

where pgu = density of geomembrane (g/cmS);
Ci, = initial concentration of a solute in the solution (mg/L);
Ci. = equilibrium concentration of the solute in the solution (mg/L);
Vi = volume of liquid contacting with geomembrane (mL); and

Mgy = mass of geomembrane applied (g).
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Fig. 54 A batch test apparatus for measurement of partition and diffusion coefficients of

geomembranes.
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Figure 5.5 Schematic diagram of diffusion model from a well mixed solution of limited

volume.

An analytical solution for small values of time (before solute reaches at the center of

geomembrane):

where M, = amount of solute in geomembrane at time t [M];
Mo = amount of solute in geomembrane in the inifinite time (at equilibrium) [M];
a = a / (K - 1) [dimensionless]; and

g» = non-zero positive roots of tan(g,) =—a-q,.

An alternative solution,

M -
Mt =(1+a) - [1—-e™ «erfeVy Ta?]

T=D-t*

In terms of concentration in solution at time, t, (Reynolds et al., 1990)

C 2 -
C“ = eorfN Ta?
]
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and
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a
tyy=0.585 « ——
1 K*-D

where t;, = time for C;/C;, = 0.5.

Numerical Analysis
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Fig 5.6 An example of partition and diffusion coefficient estimation using mathematical model
and observed data from batch test (Joo et al., 2004)
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Fig 5.7 Relationship between the octanol-water partition coefficients (Kow) and the HDPE-water

partition coefficients (Kuppe-w) of various organic compounds in dilute aqueous solutions (Joo, et al.
2004)
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Fig. 5.8 Relationship between the diffusion coefficients (D) and molecular diameter (dm) of organic

compounds for dilute aqueous organic compound

(2) Compartment test
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Fig. 5.9 Example of schematic of confined double-compartment apparatus.
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Fig. 5.10 An example of partition and diffusion coefficient estimation using mathematical

model and observed data from compartment test

523 Prediction of Mass Transport in Composite Liner System
Kim (1997)
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