
Concept Selection & Test

4013.315 Architectural Engineering System Design

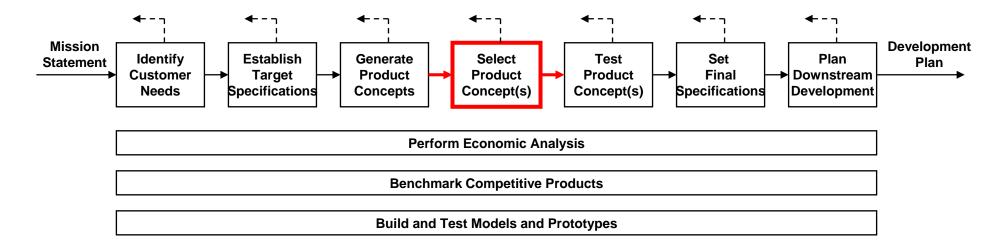
May 13th, 2009

Moonseo Park

Associate Professor, PhD

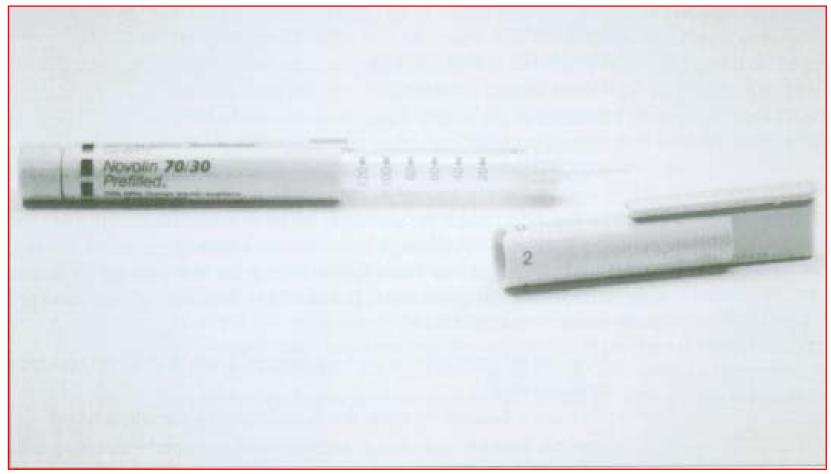
39동 433 Phone 880-5848, Fax 871-5518 E-mail: mspark@snu.ac.kr

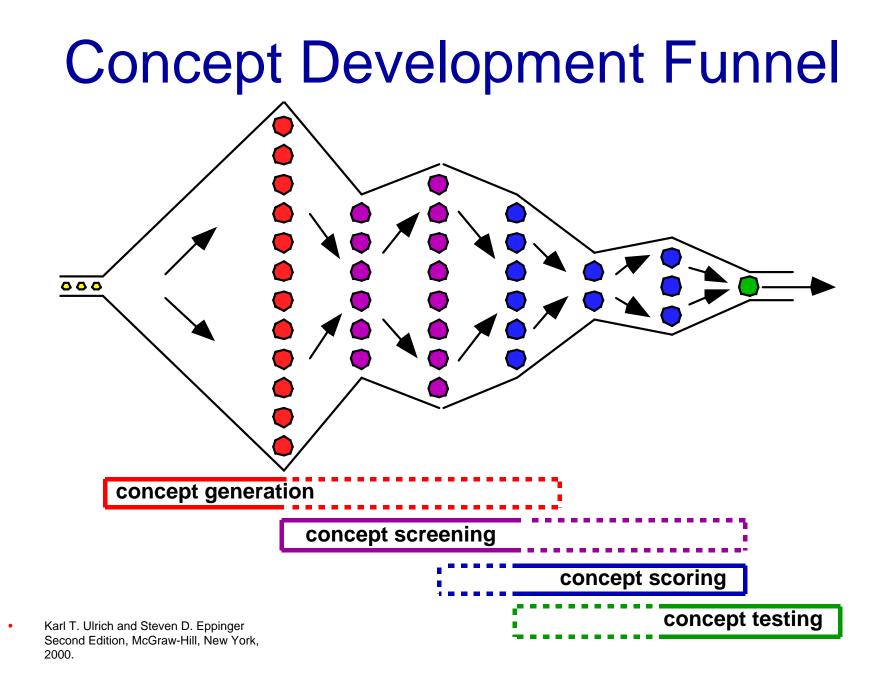
> Department of Architecture College of Engineering Seoul National University


Concept Selection

Teaching materials to accompany:

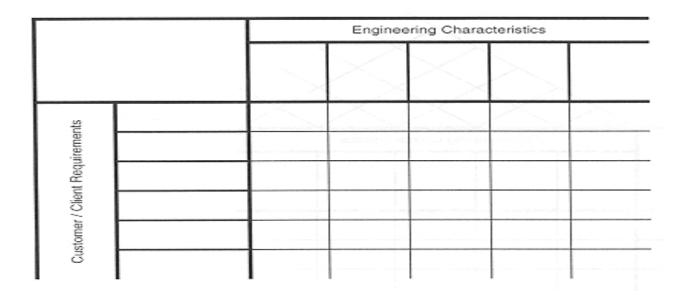
Product Design and Development Chapter 7


Karl T. Ulrich and Steven D. Eppinger 2nd Edition, Irwin McGraw-Hill, 2000.


Concept Development Process

[•] Karl T. Ulrich and Steven D. Eppinger Second Edition, McGraw-Hill, New York, 2000.

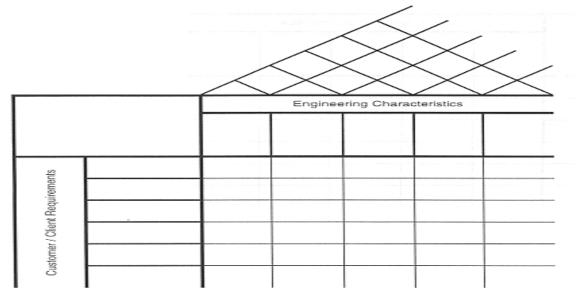
Concept Selection Example: Reusable Syringe

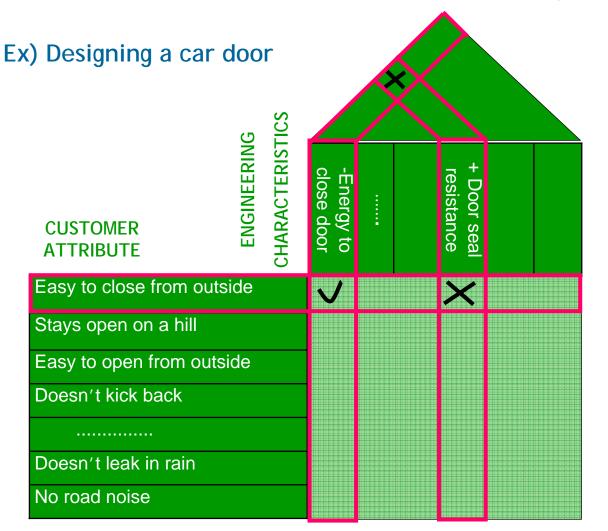

Concept Selection Process

- Prepare the Matrix
 - Criteria
 - Reference Concept
 - Weightings
- Rate Concepts
 - Scale (+ 0) or (1-5)
 - Compare to Reference Concept or Values
- Rank Concepts
 - Sum Weighted Scores
- Combine and Improve
 - Remove Bad Features
 - Combine Good Qualities
- Select Best Concept
 - May Be More than One
 - Beware of Average Concepts
- Reflect on the Process
 - Continuous Improvement
- Karl T. Ulrich and Steven D. Eppinger Second Edition, McGraw-Hill, New York, 2000.

Pugh Chart

Method for concept selection


- What design concepts would have useful functions
- Helps list advantages and disadvantages of certain designs


House of Quality

A design tool that enables engineers and management to relate the attributes to the engineering characteristics.

- Attributes a customer might associate with a quality product
- Engineering characteristics responsible for such attributes

House of Quality

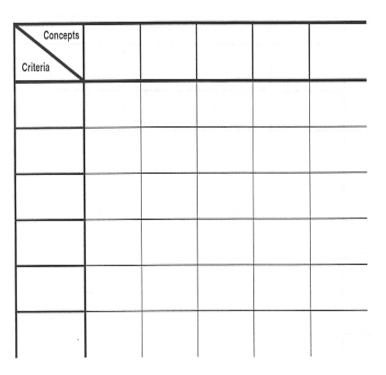
✓: Strong positive★:Strong negative

• Karl T. Ulrich and Steven D. Eppinger Second Edition, McGraw-Hill, New York, 2000.

-Harvard business review-

Screening Matrix - Concept selection process

Preparing the selection matrix


•List the **project concepts** as **rows** of the matrix

•List the selection criteria as columns of the matrix (Pick criteria based on customer needs, or enterprise needs)

Rating the concepts

Place a relative score of (+), (0), or
(-) in each box by making a comparison with the reference concept

Sums up the pluses and minuses for each concept, and then rank orders the concepts

 Karl T. Ulrich and Steven D. Eppinger Second Edition, McGraw-Hill, New York, 2000.

http://www.foundationcoalition.org/resources/first-year/asu/course-materials/concept-selection.html

Screening Matrix - Example

Where to go for a lunch (I'm in 35 dong) Concepts 3rd Cafeteria 3rd Cafeteria Snack Bar Restaurant Dong-won hall 공대 식당 3층) (공대 식당 4층) (공대) Jahayoen Distant 1 0 -1 1 1 Cost 0 -1 0 0 1 Taste 0 1 0 0 1 Quality 1 1 -1 1 1 Wating time -1 -1 1 -1 -1 Buffet 0 1 0 0 1 side dishes Menu 0 1 0 0 1 Interior 1 1 0 1 1

2

1

2

4

Karl T. Ulrich and Steven D. Eppinger Second Edition, McGraw-Hill, New York, 2000.

Total

3

Criteria

Example: Concept Screening

_		CONCEPT VARIANTS									
SELECTION CRITERIA		A	В	С	D	E	F	G	REF.		
Ease of	Handling	0	0	_	0	0	_	_	0		
Ease of	Ease of Use		—	—	0	0	+	0	0		
Number	Number Readability		0	+	0	+	0	+	0		
Dose M	Dose Metering		+	+	+	+	0	+	0		
	Load Handling		0	0	0	0	+	0	0		
Manufa	Manufacturing Ease		_	_	0	0	_	0	0		
Portabil	Portability		+	—	—	0	—	_	0		
	PLUSES		2	2	1	2	2	2			
	SAMES	4	3	1	5	5	2	3			
	MINUSES	0	2	4	1	0	3	2			
	NET	3	0	?	0	2	?	0			
	RANK	1	3	7	5	2	6	4			
	CONTINUE?	Yes	Yes	No	No	Yes	No	Yes			

Scoring Matrix - Example

Where to go for a lunch?

	Rating	3 rd Cafeteria (공대 식당 3층)	3 rd Cafeteria (공대 식당 4층)	Snack Bar (공대)	Restaurant Jahayoen	Dong-won hall
Distant	1	1*1=1	1*1=1	1*1=1	0*1=0	-1*1=-1
Cost	5	0*5=0	-1*5=-5	1*5=5	0*5=0	0*5=0
Taste	2	0*2=0	1*2=2	0*2=0	0*2=0	1*2=2
Quality	1	1*1=1	1*1=1	-1*1=-1	1*1=1	1*1=1
Waiting time	1	-1*1=-1	-1*1=-1	1*1=1	-1*1=-1	-1*1=-1
Buffet side dishes	2	1*2=2	1*2=2	0*2=0	0*2=0	0*2=0
Menu	1	0*1=0	1*1=1	0*1=0	0*1=0	1*1=1
Interior		1*1=1	1*1=1	0*1=0	1*1=1	1*1=1
Total		4	4	6	1	1

Scoring Matrix - Concept Scoring process

More detailed than the screening matrix

- •List the remaining project concepts as columns of the matrix
- •Split the concept columns into two one for rating and another for weighted scoring
- •List the selection criteria as rows of the matrix add weights to the criteria

Criteria		Concepts							
	Weight	Rating	Rating x Weight	Rating	Rating x Weight	Rating	Rating × Weight	Rating	Bating x Weight

• Karl T. Ulrich and Steven D. Eppinger Second Edition, McGraw-Hill, New York, 2000. http://www.foundationcoalition.org/resources/first-year/asu/course-materials/concept-selection.html

Rating the concepts

- Place a numerical score of 1, 2, 3, 4, or 5 in each box by making a comparison with the reference concept
- Multiplies the criteria weight by the relative performance rating for each component, and then ranks the concepts by total score.

Selects one or two concepts

	Weight	Concepts								
Criteria										
		Rating	Rating x Weight	Rating	Rating x Weight	Rating	Rating × Weight	Bating	Rating x Weight	
Tatal	Score									

 Karl T. Ulrich and Steven D. Eppinger Second Edition, McGraw-Hill, New York, 2000. http://www.foundationcoalition.org/resources/first-year/asu/course-materials/concept-selection.html

Example: Concept Scoring

		Concepts								
			A	DF		E		G+		
		(reference) Master Cylinder		Lever Stop		Swash Ring		Dial So	crew+	
Selection Criteria	Weight	Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score	
Ease of Handling	5%	3	0.15	3	0.15	4	0.2	4	0.2	
Ease of Use	15%	3	0.45	4	0.6	4	0.6	3	0.45	
Readability of Settings	10%	2	0.2	3	0.3	5	0.5	5	0.5	
Dose Metering Accuracy	25%	3	0.75	3	0.75	2	0.5	3	0.75	
Durability	15%	2	0.3	5	0.75	4	0.6	3	0.45	
Ease of Manufacture	20%	3	0.6	3	0.6	2	0.4	2	0.4	
Portability 10%		3	0.3	3	0.3	3	0.3	3	0.3	
	Total Score	2.75		3.45		3.10		3.05		
	Rank		4		1		2		3	
	Continue?	Continue? No		Develop		No		No		

Remember...

The goal of concept selection is not to

• <u>Select</u> the best concept.

The goal of concept selection is to

• <u>Develop</u> the best concept.

So remember to <u>combine and refine</u> the concepts to develop better ones!

[•] Karl T. Ulrich and Steven D. Eppinger Second Edition, McGraw-Hill, New York, 2000.

Caveats

- Beware of the best "average" product.
- Perform concept selection for each different customer group and compare results.
- Check sensitivity of selection to the importance weightings and ratings.
- The selection process is at least as important in building consensus and fostering discussion as in selecting a good concept.
- Concept selection is iterative and convergent.

[•] Karl T. Ulrich and Steven D. Eppinger Second Edition, McGraw-Hill, New York, 2000.

Concept Selection Exercise

1. Mission statement

2. Customer needs

3. Criteria for evaluating the products

4. Reference concept

5. Weightings

6. Group evaluation with respect to each criterion

Concept Testing

Concept Testing is Used for Several Purposes

- Go/no-go decisions
- What market to be in?
- Selecting among alternative concepts
- Confirming concept selection decision
- Benchmarking
- Soliciting improvement ideas
- Forecasting demand
- Ready to launch?

Concept Testing Process

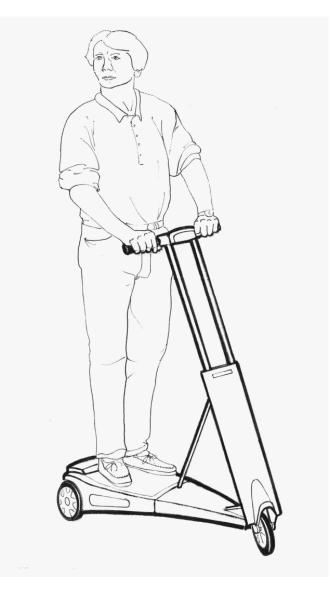
- Define the purpose of the test
- Choose a survey population
- Choose a survey format
- Communicate the concept
- Measure customer response
- Interpret the results
- Reflect on the results and the process

Concept Testing Example: emPower Electric Scooter

Scooter Example

- Purpose of concept test:
 - What market to be in?
- Sample population:
 - College students who live 1-3 miles from campus
 - Factory transportation
- Survey format:
 - Face-to-face interviews

Communicating the Concept


- Verbal description
- Sketch
- Photograph or rendering
- Storyboard
- Video
- Simulation
- Interactive multimedia
- Physical appearance model
- Working prototype

Verbal Description

- The product is a lightweight electric scooter that can be easily folded and taken with you inside a building or on public transportation.
- The scooter weighs about 25 pounds. It travels at speeds of up to 15 miles per hour and can go about 12 miles on a single charge.
- The scooter can be recharged in about two hours from a standard electric outlet.
- The scooter is easy to ride and has simple controls
 just an accelerator button and a brake.

[•] Karl T. Ulrich and Steven D. Eppinger Second Edition, McGraw-Hill, New York, 2000.

Rendering

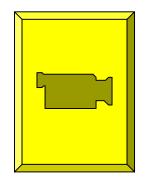
Karl T. Ulrich and S
 Second Edition, Mc
 2000.

Storyboard

3D Solid CAD Model

Appearance Model

Working Prototype

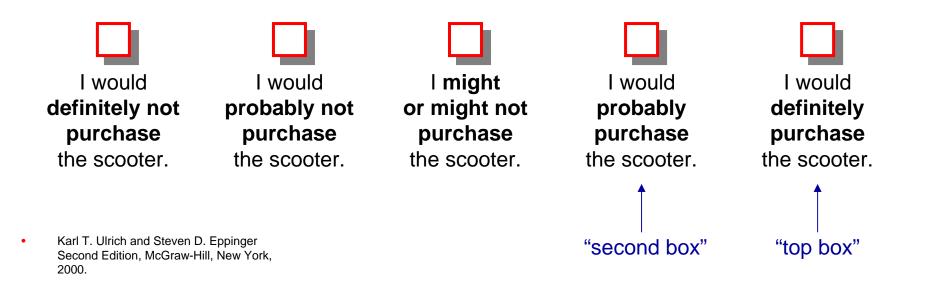

Karl T. Ulrich and Steven D. Eppinger Second Edition, McGraw-Hill, New Yo 2000.

.

Beta Prototype

Video Animation Interactive Multimedia Live Demonstration

Survey Format


• PART 1, Qualification

- How far do you live from campus?
 - <If not 1-3 miles, thank the customer and end interview.>
- How do you currently get to campus from home?
- How do you currently get around campus?
- PART 2, Product Description
 - <Present the concept description.>

Karl T. Ulrich and Steven D. Eppinger Second Edition, McGraw-Hill, New York, 2000.

• PART 3, Purchase Intent

 If the product were priced according to your expectations, how likely would you be to purchase the scooter within the next year?

Survey Format

• PART 4, Comments

- What would you expect the price of the scooter to be?
- What concerns do you have about the product concept?
- Can you make any suggestions for improving the product concept?

• Thank you.

Karl T. Ulrich and Steven D. Eppinger Second Edition, McGraw-Hill, New York, 2000.

Interpreting the Results: Forecasting Sales

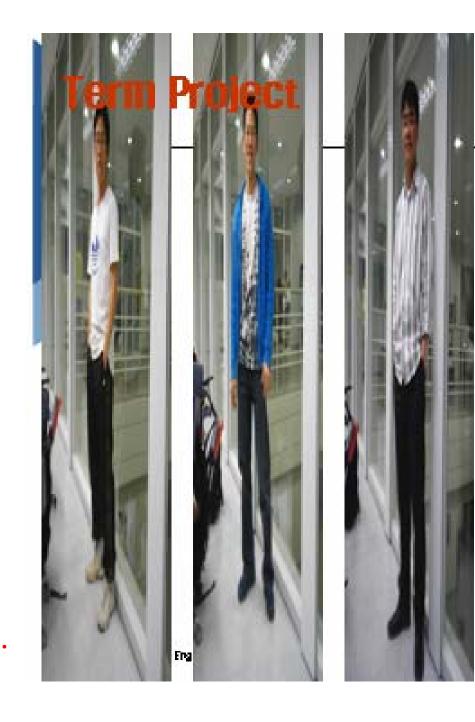
 $Q = N \times A \times P$

- Q = sales (annual)
- N = number of (annual) purchases
- A = awareness x availability (fractions)
- P = probability of purchase (surveyed)

Forecasting Example: College Student Market

- N = off-campus grad students (200,000)
- A = 0.2 (realistic) to 0.8 (every bike shop)
- P = 0.4 x *top-box* + 0.2 x *second-box*
- Q =

Forecasting Example: Factory Transport Market


- N = current bicycle and scooter sales to factories (150,000)
- A = 0.25 (single distributor's share)
- P = 0.4 x *top-box* + 0.2 x *second-box*
- Q = 150,000 x 0.25 x [0.4 x 0.3 + 0.2 x 0.2] = 6000 units/yr

emPower's Market Decision: Factory Transportation

Production Product

Architectural

Engineering Systems Design